BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kargozar S, Singh RK, Kim HW, Baino F. "Hard" ceramics for "Soft" tissue engineering: Paradox or opportunity? Acta Biomater 2020;115:1-28. [PMID: 32818612 DOI: 10.1016/j.actbio.2020.08.014] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Simorgh S, Alasvand N, Khodadadi M, Ghobadi F, Malekzadeh Kebria M, Brouki Milan P, Kargozar S, Baino F, Mobasheri A, Mozafari M. Additive Manufacturing of Bioactive Glass Biomaterials. Methods 2022. [DOI: 10.1016/j.ymeth.2022.10.010] [Reference Citation Analysis]
2 Kargozar S, Hooshmand S, Hosseini SA, Gorgani S, Kermani F, Baino F. Antioxidant Effects of Bioactive Glasses (BGs) and Their Significance in Tissue Engineering Strategies. Molecules 2022;27:6642. [PMID: 36235178 DOI: 10.3390/molecules27196642] [Reference Citation Analysis]
3 Nandhakumar M, Thangaian DT, Sundaram S, Roy A, Subramanian B. An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022;12:16162. [PMID: 36171341 DOI: 10.1038/s41598-022-20575-z] [Reference Citation Analysis]
4 Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. Coatings 2022;12:1380. [DOI: 10.3390/coatings12101380] [Reference Citation Analysis]
5 Kermani F, Sadidi H, Ahmadabadi A, Hoseini SJ, Tavousi SH, Rezapanah A, Nazarnezhad S, Hosseini SA, Mollazadeh S, Kargozar S. Modified Sol–Gel Synthesis of Mesoporous Borate Bioactive Glasses for Potential Use in Wound Healing. Bioengineering 2022;9:442. [DOI: 10.3390/bioengineering9090442] [Reference Citation Analysis]
6 Montazerian M, Baino F, Fiume E, Migneco C, Alaghmandfard A, Sedighi O, Deceanne AV, Wilkinson CJ, Mauro JC. Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101023] [Reference Citation Analysis]
7 Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses as Biologically Active Materials for Healing of Skin Wounds. Bioactive Glasses and Glass‐Ceramics 2022. [DOI: 10.1002/9781119724193.ch21] [Reference Citation Analysis]
8 Viana MDSM, Valverde TM, Barrioni BR, de Goes AM, de Sá MA, Pereira MDM. Binary SiO2–CoO spherical bioactive glass nanoparticles for tissue engineering applications. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.08.078] [Reference Citation Analysis]
9 Arif ZU, Khalid MY, Noroozi R, Sadeghianmaryan A, Jalalvand M, Hossain M. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int J Biol Macromol 2022:S0141-8130(22)01572-0. [PMID: 35896130 DOI: 10.1016/j.ijbiomac.2022.07.140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
10 Ege D, Zheng K, Boccaccini AR. Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions. ACS Appl Bio Mater 2022. [PMID: 35816417 DOI: 10.1021/acsabm.2c00384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Lee J, Ng H, Lin Y, Lin T, Kao C, Shie M. The Synergistic Effect of Cyclic Tensile Force and Periodontal Ligament Cell-Laden Calcium Silicate/Gelatin Methacrylate Auxetic Hydrogel Scaffolds for Bone Regeneration. Cells 2022;11:2069. [DOI: 10.3390/cells11132069] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen Y, Wu X, Li J, Jiang Y, Xu K, Su J. Bone-Targeted Nanoparticle Drug Delivery System: An Emerging Strategy for Bone-Related Disease. Front Pharmacol 2022;13:909408. [PMID: 35712701 DOI: 10.3389/fphar.2022.909408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Luo L, Gong W, Yang X, Qin X, Liu W, Liu L, Ji L. Preparation of super-long aligned mesoporous bioactive glass tubes by an aligned porous polystyrene template. Materials Today Communications 2022;31:103309. [DOI: 10.1016/j.mtcomm.2022.103309] [Reference Citation Analysis]
14 Ma J, Wu C. Bioactive inorganic particles‐based biomaterials for skin tissue engineering. Exploration. [DOI: 10.1002/exp.20210083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Sedighi O, Alaghmandfard A, Montazerian M, Baino F. A critical review of bioceramics for magnetic hyperthermia. J Am Ceram Soc 2022;105:1723-47. [DOI: 10.1111/jace.17861] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Yamaguchi S, Takeuchi T, Ito M, Kokubo T. CaO-B2O3-SiO2 glass fibers for wound healing. J Mater Sci: Mater Med 2022;33. [DOI: 10.1007/s10856-021-06618-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Kargozar S, Milan PB, Amoupour M, Kermani F, Gorgani S, Nazarnezhad S, Hooshmand S, Baino F. Osteogenic Potential of Magnesium (Mg)-Doped Multicomponent Bioactive Glass: In Vitro and In Vivo Animal Studies. Materials (Basel) 2022;15:318. [PMID: 35009464 DOI: 10.3390/ma15010318] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite–bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022;12:21079-91. [DOI: 10.1039/d2ra02781j] [Reference Citation Analysis]
19 Kermani F, Kargozar S, Dorozhkin SV, Mollazadeh S. Calcium phosphate bioceramics for improved angiogenesis. Biomaterials for Vasculogenesis and Angiogenesis 2022. [DOI: 10.1016/b978-0-12-821867-9.00004-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Vijayan VM, Hernandez-moreno G, Thomas V. Future of nanotechnology in tissue engineering. Tissue Engineering 2022. [DOI: 10.1016/b978-0-12-824064-9.00003-4] [Reference Citation Analysis]
21 Kargozar S, Hosseini SA, Mozafari M. Angiogenesis and vasculogenesis: Status in tissue engineering. Biomaterials for Vasculogenesis and Angiogenesis 2022. [DOI: 10.1016/b978-0-12-821867-9.00012-3] [Reference Citation Analysis]
22 Mukhametov UF, Lyulin SV, Borzunov DY, Gareev IF, Beylerli OA, Yang G. Alloplastic and Implant Materials for Bone Grafting: a Literature Review. Kreativnaâ hirurgiâ i onkologiâ 2021;11:343-353. [DOI: 10.24060/2076-3093-2021-11-4-343-353] [Reference Citation Analysis]
23 Zhu L, Li J, Dong Y. Effect of mesoporous bioactive glass on odontogenic differentiation of human dental pulp stem cells. PeerJ 2021;9:e12421. [PMID: 34900414 DOI: 10.7717/peerj.12421] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Fiume E, Magnaterra G, Rahdar A, Verné E, Baino F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021;4:542-63. [DOI: 10.3390/ceramics4040039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
26 Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022;8:267-95. [PMID: 34541401 DOI: 10.1016/j.bioactmat.2021.06.027] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 41.0] [Reference Citation Analysis]
27 Zhu H, Zheng K, Boccaccini AR. Multi-functional silica-based mesoporous materials for simultaneous delivery of biologically active ions and therapeutic biomolecules. Acta Biomater 2021;129:1-17. [PMID: 34010692 DOI: 10.1016/j.actbio.2021.05.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 33.0] [Reference Citation Analysis]
28 Stone-Weiss N, Bradtmüller H, Eckert H, Goel A. Composition-Structure-Solubility Relationships in Borosilicate Glasses: Toward a Rational Design of Bioactive Glasses with Controlled Dissolution Behavior. ACS Appl Mater Interfaces 2021;13:31495-513. [PMID: 34219455 DOI: 10.1021/acsami.1c07519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
29 Xu K, Meng Q, Li L, Zhu M. Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair. Ceramics International 2021;47:18905-18912. [DOI: 10.1016/j.ceramint.2021.03.231] [Reference Citation Analysis]
30 Ghosh S, Webster TJ. Mesoporous Silica Based Nanostructures for Bone Tissue Regeneration. Front Mater 2021;8:692309. [DOI: 10.3389/fmats.2021.692309] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
31 Hooshmand S, Mollazadeh S, Akrami N, Ghanad M, El-Fiqi A, Baino F, Nazarnezhad S, Kargozar S. Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials (Basel) 2021;14:3337. [PMID: 34204198 DOI: 10.3390/ma14123337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
32 Sivaraj D, Chen K, Chattopadhyay A, Henn D, Wu W, Noishiki C, Magbual NJ, Mittal S, Mermin-Bunnell AM, Bonham CA, Trotsyuk AA, Barrera JA, Padmanabhan J, Januszyk M, Gurtner GC. Hydrogel Scaffolds to Deliver Cell Therapies for Wound Healing. Front Bioeng Biotechnol 2021;9:660145. [PMID: 34012956 DOI: 10.3389/fbioe.2021.660145] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
33 Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces 2021;204:111802. [PMID: 33964526 DOI: 10.1016/j.colsurfb.2021.111802] [Cited by in Crossref: 35] [Cited by in F6Publishing: 42] [Article Influence: 35.0] [Reference Citation Analysis]
34 Abdollahiyan P, Oroojalian F, Mokhtarzadeh A. The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. Journal of Controlled Release 2021;332:460-92. [DOI: 10.1016/j.jconrel.2021.02.036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 22.0] [Reference Citation Analysis]
35 Roy HS, Singh R, Ghosh D. SARS-CoV-2 and tissue damage: current insights and biomaterial-based therapeutic strategies. Biomater Sci 2021;9:2804-24. [PMID: 33666206 DOI: 10.1039/d0bm02077j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Kargozar S, Mozafari M, Ghodrat S, Fiume E, Baino F. Copper-containing bioactive glasses and glass-ceramics: From tissue regeneration to cancer therapeutic strategies. Mater Sci Eng C Mater Biol Appl 2021;121:111741. [PMID: 33579436 DOI: 10.1016/j.msec.2020.111741] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
37 Sadidi H, Hooshmand S, Ahmadabadi A, Javad Hosseini S, Baino F, Vatanpour M, Kargozar S. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules 2020;25:E4559. [PMID: 33036163 DOI: 10.3390/molecules25194559] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]