1 |
Liu R, Li R, Fang J, Deng K, Chen C, Li J, Wu Z, Zeng X. Apparent diffusion coefficient histogram analysis for differentiating solid ovarian tumors. Front Oncol 2022;12:904323. [DOI: 10.3389/fonc.2022.904323] [Reference Citation Analysis]
|
2 |
Cai S, Song Z, Wu M, Lu J, Sun W, Wei F, Li H, Qiang J, Li Y, Zhu J, Zhou J, Zeng M. Magnetic Resonance Imaging and Diffusion Weighted Imaging-Based Histogram in Predicting Mesenchymal Transition High-Grade Serous Ovarian Cancer. Academic Radiology 2022. [DOI: 10.1016/j.acra.2022.06.021] [Reference Citation Analysis]
|
3 |
Jiménez de los Santos ME, Reyes-Pérez JA, Domínguez Osorio V, Villaseñor-Navarro Y, Moreno-Astudillo L, Vela-Sarmiento I, Sollozo-Dupont I. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer. World J Gastroenterol 2022; 28(23): 2609-2624 [DOI: 10.3748/wjg.v28.i23.2609] [Reference Citation Analysis]
|
4 |
Zhang X, Wang Y, Zhang J, Zhang L, Wang S, Chen Y. Development of a MRI-Based Radiomics Nomogram for Prediction of Response of Patients With Muscle-Invasive Bladder Cancer to Neoadjuvant Chemotherapy. Front Oncol 2022;12:878499. [PMID: 35646654 DOI: 10.3389/fonc.2022.878499] [Reference Citation Analysis]
|
5 |
Zhang X, Wang Y, Zhang J, Xu X, Zhang L, Zhang M, Xie L, Shou J, Chen Y. Muscle-invasive bladder cancer: pretreatment prediction of response to neoadjuvant chemotherapy with diffusion-weighted MR imaging. Abdom Radiol (NY) 2022;47:2148-57. [PMID: 35306580 DOI: 10.1007/s00261-022-03455-y] [Reference Citation Analysis]
|
6 |
Sato M, Sato S, Shintani D, Hanaoka M, Ogasawara A, Miwa M, Yabuno A, Kurosaki A, Yoshida H, Fujiwara K, Hasegawa K. Clinical significance of metabolism-related genes and FAK activity in ovarian high-grade serous carcinoma. BMC Cancer 2022;22. [DOI: 10.1186/s12885-021-09148-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|