1 |
Liu J, Bi Y, Tai W, Wei Y, Zhang Q, Liu A, Hu Q, Yu L. The development of a paper-based distance sensor for the detection of Pb(2+) assisted with the target-responsive DNA hydrogel. Talanta 2023;257:124344. [PMID: 36801758 DOI: 10.1016/j.talanta.2023.124344] [Reference Citation Analysis]
|
2 |
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. Sensors (Basel) 2023;23. [PMID: 36904948 DOI: 10.3390/s23052749] [Reference Citation Analysis]
|
3 |
Zhang Y, Liao Y, Yin X, Zhang Y, Yang Z, Wang H, Yang W, Pang P. Electrochemical determination of Pb2+ based on DNAzyme-triggered rolling circle amplification and DNA-templated silver nanoclusters amplification strategy. Microchemical Journal 2023. [DOI: 10.1016/j.microc.2023.108544] [Reference Citation Analysis]
|
4 |
Yu H, Zhao Q. DNAzyme-Based Microscale Thermophoresis Sensor. Anal Chem 2023;95:2152-6. [PMID: 36657085 DOI: 10.1021/acs.analchem.2c04643] [Reference Citation Analysis]
|
5 |
Dong Y, Lee A, Ban DK, Wang K, Bandaru P. Femtomolar Level-Specific Detection of Lead Ions in Aqueous Environments, Using Aptamer-Derivatized Graphene Field-Effect Transistors. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c05542] [Reference Citation Analysis]
|
6 |
Sun H, Liu Z, Li Z, Ma X, Duan Z, Sun C. Label-Free Fluorescent Determination of Lead (II) Using DNAzyme and Thiazole Orange. Analytical Letters 2022. [DOI: 10.1080/00032719.2022.2143793] [Reference Citation Analysis]
|
7 |
Li Y, Li H, Zheng H, Wu H, Liu K, Wang J, Yang C, Ma X, Sun C. Signal-on fluorescent strategy based on RNA cleavage-inhibited catalytic hairpin assembly and photo-induced electron transfer for Pb2+ detection. Sensors and Actuators B: Chemical 2022;364:131880. [DOI: 10.1016/j.snb.2022.131880] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Gao F, Zhan F, Li S, Antwi-mensah P, Niu L, Wang Q. Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Biosensors and Bioelectronics 2022;209:114280. [DOI: 10.1016/j.bios.2022.114280] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
9 |
Yang C, Yu P, Li Y, Wang J, Ma X, Liu N, Lv T, Zheng H, Wu H, Li H, Sun C. Platform Formed from ZIF-8 and DNAzyme: "Turn-On" Fluorescence Assay for Simple, High-Sensitivity, and High-Selectivity Detection of Pb2. J Agric Food Chem 2022. [PMID: 35880309 DOI: 10.1021/acs.jafc.2c03503] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
10 |
He S, Yang Y, Xu Z, Ling H, Wang Y, Wan L, Huang N, Ye Q, Liu Y. Development of Enzyme-Free DNA Amplifier Based on Chain Reaction Principle. Acta Biomater 2022:S1742-7061(22)00393-2. [PMID: 35811071 DOI: 10.1016/j.actbio.2022.06.047] [Reference Citation Analysis]
|
11 |
Li YY, Li HD, Fang WK, Liu D, Liu MH, Zheng MQ, Zhang LL, Yu H, Tang HW. Amplification of the Fluorescence Signal with Clustered Regularly Interspaced Short Palindromic Repeats-Cas12a Based on Au Nanoparticle-DNAzyme Probe and On-Site Detection of Pb2+ Via the Photonic Crystal Chip. ACS Sens 2022;7:1572-80. [PMID: 35482449 DOI: 10.1021/acssensors.2c00516] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
12 |
Madani SA, Bahrami M, Rostami A. Modulation instability and highly sensitive optical fiber biosensor. Opt Continuum 2022;1:816. [DOI: 10.1364/optcon.456317] [Reference Citation Analysis]
|
13 |
Hu SQ, Ran SY. Single Molecular Chelation Dynamics Reveals That DNA Has a Stronger Affinity toward Lead(II) than Cadmium(II). J Phys Chem B 2022. [PMID: 35196016 DOI: 10.1021/acs.jpcb.1c10487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Zhou Y, Yi Z, Song D, Wang H, Zhao S, Long F, Zhu A. Development of a two-in-one integrated bioassay for simultaneous and rapid on-site detection of Pb2+ and Hg2+ in water. Analytica Chimica Acta 2022;1194:339397. [DOI: 10.1016/j.aca.2021.339397] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
15 |
Guo Z, Chen P, Yin L, Zuo M, Chen Q, El-seedi HR, Zou X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022;132:108498. [DOI: 10.1016/j.foodcont.2021.108498] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
|
16 |
Duan N, Li C, Song M, Wang Z, Zhu C, Wu S. Signal amplification of SiO2 nanoparticle loaded horseradish peroxidase for colorimetric detection of lead ions in water. Spectrochim Acta A Mol Biomol Spectrosc 2022;265:120342. [PMID: 34492513 DOI: 10.1016/j.saa.2021.120342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Liu Y, Qiu R, Zhang Z, Chen D, Gao Y, Liu Z, Li H, Wang C. Label-free electrochemical biosensor based on GR5 DNAzyme/Ti3C2Tx Mxenes for Pb2+ detection. Journal of Electroanalytical Chemistry 2022;905:115979. [DOI: 10.1016/j.jelechem.2021.115979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Yu Y, Li W, Gu X, Yang X, Han Y, Ma Y, Wang Z, Zhang J. Inhibition of CRISPR-Cas12a trans-cleavage by lead (II)-induced G-quadruplex and its analytical application. Food Chem 2021;378:131802. [PMID: 35032802 DOI: 10.1016/j.foodchem.2021.131802] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Tevatia R, Chan A, Oltmanns L, Lim JM, Christensen A, Stoller M, Saraf RF. Electrochemical Beacon Method to Quantify 10 Attomolar Nucleic Acids with a Semilog Dynamic Range of 7 Orders of Magnitude. Anal Chem 2021;93:16409-16. [PMID: 34843203 DOI: 10.1021/acs.analchem.1c03020] [Reference Citation Analysis]
|
20 |
D'Aurelio R, Tothill IE, Salbini M, Calò F, Mazzotta E, Malitesta C, Chianella I. A Comparison of EIS and QCM NanoMIP-Based Sensors for Morphine. Nanomaterials (Basel) 2021;11:3360. [PMID: 34947709 DOI: 10.3390/nano11123360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
21 |
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
|
22 |
Lu JY, Zhang FR, Zou WZ, Huang WT, Guo Z. Peptide-based system for sensing Pb2+ and molecular logic computing. Anal Biochem 2021;630:114333. [PMID: 34400145 DOI: 10.1016/j.ab.2021.114333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Wang Y, Ye T, Yuan M, Cao H, Yu J, Yin F, Wu X, Hao L, Xu F. An aptasensor for the detection of Pb2+ based on photoinduced electron transfer between a G-quadruplex-hemin complex and a fluorophore. Luminescence 2021. [PMID: 34519153 DOI: 10.1002/bio.4141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Wang Y, Zhang Z. Photocaged DNAzyme-gold nanoparticle probes for simultaneous quantitative measurement of Ca2+ and Zn2+. J Phys : Conf Ser 2021;2016:012010. [DOI: 10.1088/1742-6596/2016/1/012010] [Reference Citation Analysis]
|