BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xue F, Qu F, Han W, Xia L, You J. Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin. Anal Chim Acta 2019;1046:170-8. [PMID: 30482296 DOI: 10.1016/j.aca.2018.09.033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Bao Q, Lin D, Gao Y, Wu L, Fu J, Galaa K, Lin X, Lin L. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles. Microchemical Journal 2021;168:106409. [DOI: 10.1016/j.microc.2021.106409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xue J, Xiao K, Wang Y, Liu L, Li J, Li M, Qu Y, Xiao X. Aggregation-induced photoluminescence enhancement of protamine-templated gold nanoclusters for 1-hydroxypyrene detection using 9-hydroxyphenanthrene as a sensitizer. Colloids and Surfaces B: Biointerfaces 2020;189:110873. [DOI: 10.1016/j.colsurfb.2020.110873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Ren C, Shu T, Du X, Yang L, Su L, Zhang X. Luminescent Sensors Based on the Assembly of Coinage Metal Nanoclusters. Chemosensors 2022;10:253. [DOI: 10.3390/chemosensors10070253] [Reference Citation Analysis]
4 Huang Q, Zhang J, Li W, Fu Y. A heparin-modified palladium nanozyme for photometric determination of protamine. Mikrochim Acta 2020;187:226. [PMID: 32170394 DOI: 10.1007/s00604-020-4208-9] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Kaur J, Malegaonkar JN, Bhosale SV, Singh PK. An anionic tetraphenyl ethylene based simple and rapid fluorescent probe for detection of trypsin and paraoxon methyl. Journal of Molecular Liquids 2021;333:115980. [DOI: 10.1016/j.molliq.2021.115980] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
6 Liu Y, Zhang F, He X, Ma P, Huang Y, Tao S, Sun Y, Wang X, Song D. A novel and simple fluorescent sensor based on AgInZnS QDs for the detection of protamine and trypsin and imaging of cells. Sensors and Actuators B: Chemical 2019;294:263-9. [DOI: 10.1016/j.snb.2019.05.057] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
7 Meng L, Wu Y, Xu N. Gold nanoclusters fluorescence probe for monitoring chloramphenicol and study of two-dimensional correlation fluorescence spectroscopy. Journal of Molecular Structure 2021;1223:128875. [DOI: 10.1016/j.molstruc.2020.128875] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Fu B, Zheng X, Li H, Ding L, Wang F, Guo D, Yang W, Pan Q. A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sensors and Actuators B: Chemical 2021;346:130502. [DOI: 10.1016/j.snb.2021.130502] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
9 Rival JV, Mymoona P, Lakshmi KM, Nonappa, Pradeep T, Shibu ES. Self-Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small 2021;17:e2005718. [PMID: 33491918 DOI: 10.1002/smll.202005718] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 14.0] [Reference Citation Analysis]
10 Chan CW, Cheng H, Hau FK, Chan AK, Yam VW. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2′-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. ACS Appl Mater Interfaces 2019;11:31585-93. [DOI: 10.1021/acsami.9b08653] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Zhang Y, Xu N, Meng L. Ratiometric Detection of Rifampin by Using Self‐Assembled Nanocomposites with Dual Fluorescence Emissions and Analysis of Two‐Dimensional Correlation Spectroscopy. Bull Korean Chem Soc 2020;41:433-8. [DOI: 10.1002/bkcs.11987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Wang M, Kong D, Su D, Liu Y, Su X. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot–copper nanocluster nanohybrid. Nanoscale 2019;11:13903-8. [DOI: 10.1039/c9nr02901j] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
13 Chen ZJ, Wu HL, Shen YD, Wang H, Zhang YF, Hammock B, Li ZF, Luo L, Lei HT, Xu ZL. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. J Hazard Mater 2022;424:127411. [PMID: 34629198 DOI: 10.1016/j.jhazmat.2021.127411] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
14 Li P, Wu C, Xu Y, Cheng D, Lu Q, Gao J, Yang W, Zhu X, Liu M, Li H, Yin P, Zhang Y. Group IV nanodots: Newly emerging properties and application in biomarkers sensing. TrAC Trends in Analytical Chemistry 2020;131:116007. [DOI: 10.1016/j.trac.2020.116007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]
15 Yao Z, Liu Y, Diao Y, Hu G, Qian Y, Li Z. Fluorometry detection for trypsin via inner filter effect between cytochrome C and in-situ formed fluorescent thiochrome. Talanta 2021;234:122614. [PMID: 34364423 DOI: 10.1016/j.talanta.2021.122614] [Reference Citation Analysis]
16 Ma C, Li P, Xia L, Qu F, Kong RM, Song ZL. A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites. Mikrochim Acta 2021;188:259. [PMID: 34268632 DOI: 10.1007/s00604-021-04914-x] [Reference Citation Analysis]
17 Amouzadeh Tabrizi M, Ferré-Borrull J, Marsal LF. Remote biosensor for the determination of trypsin by using nanoporous anodic alumina as a three-dimensional nanostructured material. Sci Rep 2020;10:2356. [PMID: 32047212 DOI: 10.1038/s41598-020-59287-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
18 Mei H, Ma Y, Wu H, Wang X. Fluorescent and visual assay of H2O2 and glucose based on a highly sensitive copper nanoclusters-Ce(III) fluoroprobe. Anal Bioanal Chem 2021;413:2135-46. [PMID: 33511458 DOI: 10.1007/s00216-021-03181-2] [Reference Citation Analysis]
19 Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120509. [PMID: 34688060 DOI: 10.1016/j.saa.2021.120509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Liu H, Yin H, Dong Y, Ding H, Chu X. Electrochemiluminescence resonance energy transfer between luminol and black phosphorus nanosheets for the detection of trypsin via the “off–on–off” switch mode. Analyst 2020;145:2204-11. [DOI: 10.1039/d0an00156b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
21 Wang M, Wang S, Xie X, Su X. Ag-Ion-Modified Au Nanoclusters for Fluorometric Analysis of Alkaline Phosphatase. ACS Appl Nano Mater 2020;3:6034-42. [DOI: 10.1021/acsanm.0c01243] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
22 Swaminathan N, Sharma N, Nerthigan Y, Wu H. Self-assembled diphenylalanine-zinc oxide hybrid nanostructures as a highly selective luminescent biosensor for trypsin detection. Applied Surface Science 2021;554:149600. [DOI: 10.1016/j.apsusc.2021.149600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Li M, Xie Y, Lei L, Huang H, Li Y. Colorimetric logic gate for protamine and trypsin based on the Bpy-Cu nanozyme with laccase-like activity. Sensors and Actuators B: Chemical 2022;357:131429. [DOI: 10.1016/j.snb.2022.131429] [Reference Citation Analysis]
24 Miao W, Wang L, Liu Q, Guo S, Zhao L, Peng J. Rare earth ions‐enhanced gold nanoclusters as fluorescent sensor array for the detection and discrimination of phosphate anions. Chem Asian J 2021;16:247-51. [DOI: 10.1002/asia.202001296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chen J, Wang M, Su X. Ratiometric fluorescent detection of azodicarbonamide based on silicon nanoparticles and quantum dots. Sensors and Actuators B: Chemical 2019;296:126643. [DOI: 10.1016/j.snb.2019.126643] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
26 Qu F, Wang Z, Li C, Jiang D, Zhao X. Peptide cleavage-mediated aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022;359:131610. [DOI: 10.1016/j.snb.2022.131610] [Reference Citation Analysis]
27 Shang L, Xu J, Nienhaus GU. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 2019;28:100767. [DOI: 10.1016/j.nantod.2019.100767] [Cited by in Crossref: 51] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
28 Cheng H, Zhao Y, Xu H, Hu Y, Zhang L, Song G, Yao Z. Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes and Pigments 2020;180:108456. [DOI: 10.1016/j.dyepig.2020.108456] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
29 Qu F, Meng L, Zi Y, You J. Ratiometric detection of alkaline phosphatase based on aggregation-induced emission enhancement. Anal Bioanal Chem 2019;411:7431-40. [PMID: 31655858 DOI: 10.1007/s00216-019-02098-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Wuri H, Ai J, Ga L. Template method synthesis of highly fluorescent duplex oligonucleotide copper nanomaterials for Fe 3+ sensing. Mater Res Express 2020;7:125001. [DOI: 10.1088/2053-1591/abcc8b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 He Z, Shu T, Su L, Zhang X. Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing. Molecules 2019;24:E3045. [PMID: 31443398 DOI: 10.3390/molecules24173045] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
32 Kaur J, Singh PK. Trypsin Detection Strategies: A Review. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1846490] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]