BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Seia MA, Stege PW, Pereira SV, De Vito IE, Raba J, Messina GA. Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin. Analytical Biochemistry 2014;463:31-7. [DOI: 10.1016/j.ab.2014.06.016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Li H, Yang M, Kong D, Jin R, Zhao X, Liu F, Yan X, Lin Y, Lu G. Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters. Sensors and Actuators B: Chemical 2019;282:366-72. [DOI: 10.1016/j.snb.2018.11.077] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 6.7] [Reference Citation Analysis]
2 Bao Q, Lin D, Gao Y, Wu L, Fu J, Galaa K, Lin X, Lin L. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles. Microchemical Journal 2021;168:106409. [DOI: 10.1016/j.microc.2021.106409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Moreira CM, Pereira SV, Raba J, Bertolino FA, Messina GA. Paper-based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria. Clinica Chimica Acta 2018;486:59-65. [DOI: 10.1016/j.cca.2018.07.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
4 Zhang L, Du J. A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate. Biosens Bioelectron 2016;79:347-52. [PMID: 26724537 DOI: 10.1016/j.bios.2015.12.070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
5 Dong Z, Cheng L, Zhang P, Zhao G. Label-free analytical performances of a peptide-based QCM biosensor for trypsin. Analyst 2020;145:3329-38. [DOI: 10.1039/d0an00308e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Lin X, Zhu Z, Zhao C, Li S, Liu Q, Liu A, Lin L, Lin X. Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors and Actuators B: Chemical 2019;284:346-53. [DOI: 10.1016/j.snb.2018.12.109] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Benuzzi MLS, Pereira SV, Raba J, Messina GA. Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Microchim Acta 2016;183:397-405. [DOI: 10.1007/s00604-015-1660-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Medawar-aguilar V, Jofre CF, Fernández-baldo MA, Alonso A, Angel S, Raba J, Pereira SV, Messina GA. Serological diagnosis of Toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Analytical Biochemistry 2019;564-565:116-22. [DOI: 10.1016/j.ab.2018.10.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
9 Zhang S, Chen C, Qin X, Zhang Q, Liu J, Zhu J, Gao Y, Li L, Huang W. Ultrasensitive detection of trypsin activity and inhibitor screening based on the electron transfer between phosphorescence copper nanocluster and cytochrome c. Talanta 2018;189:92-9. [PMID: 30086981 DOI: 10.1016/j.talanta.2018.06.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
10 Ling L, Xiao C, Wang S, Guo L, Guo X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI-TOF-MS. Talanta 2019;200:236-41. [DOI: 10.1016/j.talanta.2019.03.055] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
11 Xue F, Qu F, Han W, Xia L, You J. Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin. Anal Chim Acta 2019;1046:170-8. [PMID: 30482296 DOI: 10.1016/j.aca.2018.09.033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
12 Aranda PR, Messina GA, Bertolino FA, Pereira SV, Fernández Baldo MA, Raba J. Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal 2018;141:308-23. [DOI: 10.1016/j.microc.2018.05.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
13 Medawar V, Messina GA, Fernández-baldo M, Raba J, Pereira SV. Fluorescent immunosensor using AP-SNs and QDs for quantitation of IgG anti- Toxocara canis. Microchemical Journal 2017;130:436-41. [DOI: 10.1016/j.microc.2016.10.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
14 Marín-barroso E, Moreira CM, Messina GA, Bertolino FA, Alderete M, Soler-illia GJ, Raba J, Pereira SV. Paper based analytical device modified with nanoporous material for the fluorescent sensing of gliadin content in different food samples. Microchemical Journal 2018;142:78-84. [DOI: 10.1016/j.microc.2018.06.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116637] [Reference Citation Analysis]
16 Malecha K. The Implementation of Fluorescence-Based Detection in LTCC (Low-Temperature-Co-Fired-Ceramics) Microfluidic Modules. Int J Appl Ceram Technol 2016;13:69-77. [DOI: 10.1111/ijac.12416] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
17 Plehiers PP, Coley CW, Gao H, Vermeire FH, Dobbelaere MR, Stevens CV, Van Geem KM, Green WH. Artificial Intelligence for Computer-Aided Synthesis In Flow: Analysis and Selection of Reaction Components. Front Chem Eng 2020;2:5. [DOI: 10.3389/fceng.2020.00005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Guan S, Yue J, Sun W, Xu W, Liang C, Xu S. Ultrasensitive detection of trypsin in serum via nanochannel device. Anal Bioanal Chem 2021. [PMID: 34212213 DOI: 10.1007/s00216-021-03491-5] [Reference Citation Analysis]
19 Li F, Chen Y, Lin R, Miao C, Ye J, Cai Q, Huang Z, Zheng Y, Lin X, Zheng Z, Weng S. Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay. Anal Chim Acta 2021;1148:338201. [PMID: 33516383 DOI: 10.1016/j.aca.2021.338201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Hou S, Feng T, Zhao N, Zhang J, Wang H, Liang N, Zhao L. A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin. J Pharm Anal 2020;10:482-9. [PMID: 33133732 DOI: 10.1016/j.jpha.2020.08.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Tan Q, Zhang R, Kong W, Qu F, Lu L. Ascorbic Acid-Loaded Apoferritin-Assisted Carbon Dot-MnO 2 Nanocomposites for the Selective and Sensitive Detection of Trypsin. ACS Appl Bio Mater 2018;1:777-82. [DOI: 10.1021/acsabm.8b00235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
22 You X, Li Y, Li B, Ma J. Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin. Talanta 2016;147:63-8. [PMID: 26592577 DOI: 10.1016/j.talanta.2015.09.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
23 Chen H, Fang A, Zhang Y, Yao S. Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion nanoparticles for ultrasensitive "Turn on-off" protamine and trypsin sensor. Talanta 2017;174:148-55. [PMID: 28738561 DOI: 10.1016/j.talanta.2017.06.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]