BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013;119:191-419. [PMID: 23870513 DOI: 10.1016/B978-0-12-407190-2.00016-2] [Cited by in Crossref: 109] [Cited by in F6Publishing: 79] [Article Influence: 12.1] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Z, Xue ST, Gao Y, Li Y, Zhou Z, Wang J, Li Z, Liu Z. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Discov 2022;8:280. [PMID: 35680842 DOI: 10.1038/s41420-022-01070-w] [Reference Citation Analysis]
2 Wu W, Zhang S, He J. The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review. Front Pharmacol 2022;13:879704. [DOI: 10.3389/fphar.2022.879704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022;12:836004. [PMID: 35480118 DOI: 10.3389/fonc.2022.836004] [Reference Citation Analysis]
4 Sur S, Steele R, Ko BC, Zhang J, Ray RB. Long non-coding RNA ELDR promotes cell cycle progression in normal oral keratinocytes through induction of a CTCF-FOXM1-AURKA signaling axis. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.101895] [Reference Citation Analysis]
5 Luo G, Lin X, Vega-Medina A, Xiao M, Li G, Wei H, Velázquez-Martínez CA, Xiang H. Targeting of the FOXM1 Oncoprotein by E3 Ligase-Assisted Degradation. J Med Chem 2021;64:17098-114. [PMID: 34812040 DOI: 10.1021/acs.jmedchem.1c01069] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
6 Zhang YL, Ma Y, Zeng YQ, Liu Y, He EP, Liu YT, Qiao FL, Yu R, Wang YS, Wu XY, Leng P. A narrative review of research progress on FoxM1 in breast cancer carcinogenesis and therapeutics. Ann Transl Med 2021;9:1704. [PMID: 34988213 DOI: 10.21037/atm-21-5271] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nogueira LS, Vasconcelos CP, Plaça JR, Mitre GP, Bittencourt LO, Kataoka MSDS, de Oliveira EHC, Lima RR. Non-Lethal Concentration of MeHg Causes Marked Responses in the DNA Repair, Integrity, and Replication Pathways in the Exposed Human Salivary Gland Cell Line. Front Pharmacol 2021;12:698671. [PMID: 34512333 DOI: 10.3389/fphar.2021.698671] [Reference Citation Analysis]
8 Enzo E, Secone Seconetti A, Forcato M, Tenedini E, Polito MP, Sala I, Carulli S, Contin R, Peano C, Tagliafico E, Bicciato S, Bondanza S, De Luca M. Single-keratinocyte transcriptomic analyses identify different clonal types and proliferative potential mediated by FOXM1 in human epidermal stem cells. Nat Commun 2021;12:2505. [PMID: 33947848 DOI: 10.1038/s41467-021-22779-9] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
9 Huang R, Liu J, Li H, Zheng L, Jin H, Zhang Y, Ma W, Su J, Wang M, Yang K. Identification of Hub Genes and Their Correlation With Immune Infiltration Cells in Hepatocellular Carcinoma Based on GEO and TCGA Databases. Front Genet 2021;12:647353. [PMID: 33995482 DOI: 10.3389/fgene.2021.647353] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
10 Li HL, Li QY, Jin MJ, Lu CF, Mu ZY, Xu WY, Song J, Zhang Y, Zhang SY. A review: hippo signaling pathway promotes tumor invasion and metastasis by regulating target gene expression. J Cancer Res Clin Oncol 2021;147:1569-85. [PMID: 33864521 DOI: 10.1007/s00432-021-03604-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
11 Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, Wang C, Cao Y. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol 2021;9:661122. [PMID: 33937262 DOI: 10.3389/fcell.2021.661122] [Reference Citation Analysis]
12 Zhang W, Zhang X, Huang S, Chen J, Ding P, Wang Q, Li L, Lv X, Li L, Zhang P, Zhou D, Wen W, Wang Y, Lei QY, Wu J, Hu W. FOXM1D potentiates PKM2-mediated tumor glycolysis and angiogenesis. Mol Oncol 2021;15:1466-85. [PMID: 33314660 DOI: 10.1002/1878-0261.12879] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
13 Brückner L, Reinshagen A, Hoang NA, Höhn AK, Lordick F, Bechmann I, Aktas B, Nel I, Kallendrusch S. FOXM1 Inhibition in Ovarian Cancer Tissue Cultures Affects Individual Treatment Susceptibility Ex Vivo. Cancers (Basel) 2021;13:956. [PMID: 33668819 DOI: 10.3390/cancers13050956] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
14 Paci P, Fiscon G, Conte F, Wang RS, Farina L, Loscalzo J. Gene co-expression in the interactome: moving from correlation toward causation via an integrated approach to disease module discovery. NPJ Syst Biol Appl 2021;7:3. [PMID: 33479222 DOI: 10.1038/s41540-020-00168-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
15 Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, Mah AT, Tercan B, Sockell A, Xu H, Seoane JA, Chen J, Shmulevich I, Weissman JS, Curtis C, Califano A, Fu H, Crabtree GR, Kuo CJ. A CRISPR/Cas9-Engineered ARID1A-Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discov 2021;11:1562-81. [PMID: 33451982 DOI: 10.1158/2159-8290.CD-20-1109] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
16 Xu H, Liu L, Li W, Zou D, Yu J, Wang L, Wong CC. Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2021;40:1555-69. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yang Y, Jiang H, Li W, Chen L, Zhu W, Xian Y, Han Z, Yin L, Liu Y, Wang Y, Pan K, Zhang K. FOXM1/DVL2/Snail axis drives metastasis and chemoresistance of colorectal cancer. Aging (Albany NY) 2020;12:24424-40. [PMID: 33291076 DOI: 10.18632/aging.202300] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
18 Li N, Chen L, Xiao Z, Yang Y, Ai K. Progress in Detection of Biomarker of Ovarian Cancer: Lysophosphatidic Acid. Chinese Journal of Analytical Chemistry 2020;48:1597-606. [DOI: 10.1016/s1872-2040(20)60062-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Briest F, Koziolek EJ, Albrecht J, Schmidt F, Bernsen MR, Haeck J, Kühl AA, Sedding D, Hartung T, Exner S, Welzel M, Fischer C, Grötzinger C, Brenner W, Baum RP, Grabowski P. Does the proteasome inhibitor bortezomib sensitize to DNA-damaging therapy in gastroenteropancreatic neuroendocrine neoplasms? - A preclinical assessment in vitro and in vivo. Neoplasia 2021;23:80-98. [PMID: 33246310 DOI: 10.1016/j.neo.2020.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 Li Y, Lu L, Tu J, Zhang J, Xiong T, Fan W, Wang J, Li M, Chen Y, Steggerda J, Peng H, Chen Y, Li TWH, Zhou ZG, Mato JM, Seki E, Liu T, Yang H, Lu SC. Reciprocal Regulation Between Forkhead Box M1/NF-κB and Methionine Adenosyltransferase 1A Drives Liver Cancer. Hepatology 2020;72:1682-700. [PMID: 32080887 DOI: 10.1002/hep.31196] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
21 Hu Y, Zhang X, Zai HY, Jiang W, Xiao L, Zhu Q. lncRNA DUXAP8 Facilitates Multiple Malignant Phenotypes and Resistance to PARP Inhibitor in HCC via Upregulating FOXM1. Mol Ther Oncolytics 2020;19:308-22. [PMID: 33313387 DOI: 10.1016/j.omto.2020.10.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
22 Kase AM, Copland Iii JA, Tan W. Novel Therapeutic Strategies for CDK4/6 Inhibitors in Metastatic Castrate-Resistant Prostate Cancer. Onco Targets Ther 2020;13:10499-513. [PMID: 33116629 DOI: 10.2147/OTT.S266085] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
23 Mittermair E, Kählig H, Tahir A, Rindler S, Hudec X, Schueffl H, Heffeter P, Marian B, Krenn L. Methylated Xanthones from the Rootlets of Metaxya rostrata Display Cytotoxic Activity in Colorectal Cancer Cells. Molecules 2020;25:E4449. [PMID: 32998226 DOI: 10.3390/molecules25194449] [Reference Citation Analysis]
24 Bird KE, Xander C, Murcia S, Schmalstig AA, Wang X, Emanuele MJ, Braunstein M, Bowers AA. Thiopeptides Induce Proteasome-Independent Activation of Cellular Mitophagy. ACS Chem Biol 2020;15:2164-74. [PMID: 32589399 DOI: 10.1021/acschembio.0c00364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zeng WJ, Cheng Q, Wen ZP, Wang JY, Chen YH, Zhao J, Gong ZC, Chen XP. Aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the progression of gliomas. J Cell Mol Med 2020;24:9613-26. [PMID: 32667745 DOI: 10.1111/jcmm.15435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 0.5] [Reference Citation Analysis]
26 Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses. Cancer Manag Res 2020;12:5213-23. [PMID: 32636682 DOI: 10.2147/CMAR.S251622] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Roh YG, Mun JY, Kim SK, Park W, Jeong MS, Kim TN, Kim WT, Choi YH, Chu IS, Leem SH. Fanconi Anemia Pathway Activation by FOXM1 Is Critical to Bladder Cancer Recurrence and Anticancer Drug Resistance. Cancers (Basel) 2020;12:E1417. [PMID: 32486251 DOI: 10.3390/cancers12061417] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
28 Zhu X, Yu M, Wang K, Zou W, Zhu L. FoxM1 affects adhesive, migratory, and invasive abilities of human retinoblastoma Y-79 cells by targeting matrix metalloproteinase 2. Acta Biochim Biophys Sin (Shanghai) 2020;52:294-301. [PMID: 32152631 DOI: 10.1093/abbs/gmz160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Gao X, Ma C, Sun X, Zhao Q, Fang Y, Jiang Y, Shen K, Shen X. Upregulation of ZNF148 in SDHB-deficient gastrointestinal stromal tumor potentiates Forkhead box M1-mediated transcription and promotes tumor cell invasion. Cancer Sci 2020;111:1266-78. [PMID: 32060966 DOI: 10.1111/cas.14348] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Hassan N, Rutsch N, Győrffy B, Espinoza-Sánchez NA, Götte M. SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells. Sci Rep 2020;10:2262. [PMID: 32042016 DOI: 10.1038/s41598-020-59057-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
31 Yang D, He Y, Wu B, Deng Y, Wang N, Li M, Liu Y. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. J Ovarian Res 2020;13:10. [PMID: 31987036 DOI: 10.1186/s13048-020-0613-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
32 Zanin R, Pegoraro S, Ros G, Ciani Y, Piazza S, Bossi F, Bulla R, Zennaro C, Tonon F, Lazarevic D, Stupka E, Sgarra R, Manfioletti G. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. J Exp Clin Cancer Res 2019;38:313. [PMID: 31311575 DOI: 10.1186/s13046-019-1307-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 34] [Article Influence: 7.0] [Reference Citation Analysis]
33 Park AK, Lee JY, Cheong H, Ramaswamy V, Park SH, Kool M, Phi JH, Choi SA, Cavalli F, Taylor MD, Kim SK. Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer 2019;19:571. [PMID: 31185958 DOI: 10.1186/s12885-019-5742-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
34 Hu G, Yan Z, Zhang C, Cheng M, Yan Y, Wang Y, Deng L, Lu Q, Luo S. FOXM1 promotes hepatocellular carcinoma progression by regulating KIF4A expression. J Exp Clin Cancer Res. 2019;38:188. [PMID: 31072351 DOI: 10.1186/s13046-019-1202-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
35 Liu H, Wang W, Li X, Huang C, Zhang Z, Yuan M, Li X. High hydrostatic pressure induces apoptosis of retinal ganglion cells via regulation of the NGF signalling pathway. Mol Med Rep 2019;19:5321-34. [PMID: 31059045 DOI: 10.3892/mmr.2019.10206] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
36 Li Y, Wu F, Tan Q, Guo M, Ma P, Wang X, Zhang S, Xu J, Luo P, Jin Y. The multifaceted roles of FOXM1 in pulmonary disease. Cell Commun Signal 2019;17:35. [PMID: 30992007 DOI: 10.1186/s12964-019-0347-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
37 Ngan AWL, Grace Tsui M, So DHF, Leung WY, Chan DW, Yao KM. Novel Nuclear Partnering Role of EPS8 With FOXM1 in Regulating Cell Proliferation. Front Oncol 2019;9:154. [PMID: 30941306 DOI: 10.3389/fonc.2019.00154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
38 Wang X, Chen D, Gao J, Long H, Zha H, Zhang A, Shu C, Zhou L, Yang F, Zhu B, Wu W. Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival. Cancer Manag Res 2018;10:6971-84. [PMID: 30588102 DOI: 10.2147/CMAR.S182852] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
39 Zhou Y, Wang Q, Chu L, Dai W, Zhang X, Chen J, Zhang L, Ding P, Zhang X, Gu H, Zhang P, Li L, Zhang W, Li L, Lv X, Zhou D, Cai G, Chen L, Zhao K, Hu W. FOXM1c promotes oesophageal cancer metastasis by transcriptionally regulating IRF1 expression. Cell Prolif 2019;52:e12553. [PMID: 30485581 DOI: 10.1111/cpr.12553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
40 Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y, Zhang B. Identification of FOXM1 as a specific marker for triple‑negative breast cancer. Int J Oncol 2019;54:87-97. [PMID: 30365046 DOI: 10.3892/ijo.2018.4598] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
41 Lee VS, McRobb LS, Moutrie V, Santos ED, Siu TL. Effects of FOXM1 inhibition and ionizing radiation on melanoma cells. Oncol Lett 2018;16:6822-30. [PMID: 30405826 DOI: 10.3892/ol.2018.9482] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
42 Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal. 2018;16:57. [PMID: 30208972 DOI: 10.1186/s12964-018-0266-6] [Cited by in Crossref: 79] [Cited by in F6Publishing: 121] [Article Influence: 19.8] [Reference Citation Analysis]
43 Zhi Y, Zhou H, Mubalake A, Chen Y, Zhang B, Zhang K, Chu X, Wang R. Regulation and functions of MicroRNA-149 in human cancers. Cell Prolif 2018;51:e12465. [PMID: 29999552 DOI: 10.1111/cpr.12465] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
44 O'Regan RM, Nahta R. Targeting forkhead box M1 transcription factor in breast cancer. Biochem Pharmacol. 2018;154:407-413. [PMID: 29859987 DOI: 10.1016/j.bcp.2018.05.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
45 Pal S, Kozono D, Yang X, Fendler W, Fitts W, Ni J, Alberta JA, Zhao J, Liu KX, Bian J, Truffaux N, Weiss WA, Resnick AC, Bandopadhayay P, Ligon KL, DuBois SG, Mueller S, Chowdhury D, Haas-Kogan DA. Dual HDAC and PI3K Inhibition Abrogates NFκB- and FOXM1-Mediated DNA Damage Response to Radiosensitize Pediatric High-Grade Gliomas. Cancer Res 2018;78:4007-21. [PMID: 29760046 DOI: 10.1158/0008-5472.CAN-17-3691] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
46 Siraj AK, Pratheeshkumar P, Parvathareddy SK, Qadri Z, Thangavel S, Ahmed S, Al-Dayel F, Tulbah A, Ajarim D, Al-Kuraya KS. FoxM1 is an independent poor prognostic marker and therapeutic target for advanced Middle Eastern breast cancer. Oncotarget 2018;9:17466-82. [PMID: 29707121 DOI: 10.18632/oncotarget.24739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
47 Maachani UB, Shankavaram U, Kramp T, Tofilon PJ, Camphausen K, Tandle AT. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget 2016;7:77365-77. [PMID: 27764801 DOI: 10.18632/oncotarget.12670] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 10.3] [Reference Citation Analysis]
48 Kelleher FC, O'Sullivan H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget 2016;7:42792-804. [PMID: 27074562 DOI: 10.18632/oncotarget.8669] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
49 Yue M, Li S, Yan G, Li C, Kang Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 2018;17:240-9. [PMID: 29301438 DOI: 10.1080/15384101.2017.1407892] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
50 Vu T, Datta PK. Regulation of EMT in Colorectal Cancer: A Culprit in Metastasis. Cancers (Basel) 2017;9:E171. [PMID: 29258163 DOI: 10.3390/cancers9120171] [Cited by in Crossref: 161] [Cited by in F6Publishing: 210] [Article Influence: 32.2] [Reference Citation Analysis]
51 Yang L, He K, Yan S, Yang Y, Gao X, Zhang M, Xia Z, Huang Z, Huang S, Zhang N. Metadherin/Astrocyte elevated gene-1 positively regulates the stability and function of forkhead box M1 during tumorigenesis. Neuro Oncol 2017;19:352-63. [PMID: 27923917 DOI: 10.1093/neuonc/now229] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
52 Li C, Zhang K, Chen J, Chen L, Wang R, Chu X. MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017;8:12433-50. [PMID: 27999212 DOI: 10.18632/oncotarget.14015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
53 Chen Y, Liu Y, Ni H, Ding C, Zhang X, Zhang Z. FoxM1 overexpression promotes cell proliferation and migration and inhibits apoptosis in hypopharyngeal squamous cell carcinoma resulting in poor clinical prognosis. Int J Oncol 2017;51:1045-54. [PMID: 28848994 DOI: 10.3892/ijo.2017.4094] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
54 Sun JY, Zhao ZW, Li WM, Yang G, Jing PY, Li P, Dang HZ, Chen Z, Zhou YA, Li XF. Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and downregulation of FOXM1 expression. Oncotarget 2017;8:61499-509. [PMID: 28977880 DOI: 10.18632/oncotarget.18507] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
55 Tassi RA, Todeschini P, Siegel ER, Calza S, Cappella P, Ardighieri L, Cadei M, Bugatti M, Romani C, Bandiera E, Zanotti L, Tassone L, Guarino D, Santonocito C, Capoluongo ED, Beltrame L, Erba E, Marchini S, D'Incalci M, Donzelli C, Santin AD, Pecorelli S, Sartori E, Bignotti E, Odicino F, Ravaggi A. FOXM1 expression is significantly associated with chemotherapy resistance and adverse prognosis in non-serous epithelial ovarian cancer patients. J Exp Clin Cancer Res 2017;36:63. [PMID: 28482906 DOI: 10.1186/s13046-017-0536-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
56 Gorgoulis VG, Pateras IS, Kotsinas A. MiR-signing gastrointestinal (con-)tract cancer. Oncotarget 2017;8:29536-7. [PMID: 28427154 DOI: 10.18632/oncotarget.15701] [Reference Citation Analysis]
57 Cohn O, Feldman M, Weil L, Kublanovsky M, Levy D. Chromatin associated SETD3 negatively regulates VEGF expression. Sci Rep 2016;6:37115. [PMID: 27845446 DOI: 10.1038/srep37115] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
58 Chan DW, Hui WW, Wang JJ, Yung MM, Hui LM, Qin Y, Liang RR, Leung TH, Xu D, Chan KK, Yao KM, Tsang BK, Ngan HY. DLX1 acts as a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene 2017;36:1404-16. [PMID: 27593933 DOI: 10.1038/onc.2016.307] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
59 Subramanian N, Srimany A, Kanwar JR, Kanwar RK, Akilandeswari B, Rishi P, Khetan V, Vasudevan M, Pradeep T, Krishnakumar S. Nucleolin-aptamer therapy in retinoblastoma: molecular changes and mass spectrometry-based imaging. Mol Ther Nucleic Acids 2016;5:e358. [PMID: 27574784 DOI: 10.1038/mtna.2016.70] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
60 Fan Q, Cai Q, Xu Y. FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer. Oncotarget 2015;6:27688-99. [PMID: 26299613 DOI: 10.18632/oncotarget.4280] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
61 Zhang X, Zhang L, Du Y, Zheng H, Zhang P, Sun Y, Wang Y, Chen J, Ding P, Wang N, Yang C, Huang T, Yao X, Qiao Q, Gu H, Cai G, Cai S, Zhou X, Hu W. A novel FOXM1 isoform, FOXM1D, promotes epithelial-mesenchymal transition and metastasis through ROCKs activation in colorectal cancer. Oncogene 2017;36:807-19. [PMID: 27399334 DOI: 10.1038/onc.2016.249] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 4.2] [Reference Citation Analysis]
62 Briest F, Berg E, Grass I, Freitag H, Kaemmerer D, Lewens F, Christen F, Arsenic R, Altendorf-Hofmann A, Kunze A, Sänger J, Knösel T, Siegmund B, Hummel M, Grabowski P. FOXM1: A novel drug target in gastroenteropancreatic neuroendocrine tumors. Oncotarget 2015;6:8185-99. [PMID: 25797272 DOI: 10.18632/oncotarget.3600] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
63 Eifler K, Vertegaal ACO. SUMOylation-Mediated Regulation of Cell Cycle Progression and Cancer. Trends Biochem Sci 2015;40:779-93. [PMID: 26601932 DOI: 10.1016/j.tibs.2015.09.006] [Cited by in Crossref: 136] [Cited by in F6Publishing: 145] [Article Influence: 19.4] [Reference Citation Analysis]
64 Yu J, Wilson J, Taylor L, Polgar P. DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects. J Cell Biochem 2015;116:386-97. [PMID: 25290246 DOI: 10.1002/jcb.24987] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
65 Gao F, Bian F, Ma X, Kalinichenko VV, Das SK. Control of regional decidualization in implantation: Role of FoxM1 downstream of Hoxa10 and cyclin D3. Sci Rep 2015;5:13863. [PMID: 26350477 DOI: 10.1038/srep13863] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
66 Yu M, Tang Z, Meng F, Tai M, Zhang J, Wang R, Liu C, Wu Q. Elevated expression of FoxM1 promotes the tumor cell proliferation in hepatocellular carcinoma. Tumour Biol 2016;37:1289-97. [PMID: 26289845 DOI: 10.1007/s13277-015-3436-9] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
67 Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, Qing C, Koeffler HP, Tong Y. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics 2015;8:49. [PMID: 26264222 DOI: 10.1186/s12920-015-0126-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
68 Ju SY, Huang CY, Huang WC, Su Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis. 2015;6:e1801. [PMID: 26136074 DOI: 10.1038/cddis.2015.155] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
69 Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol 2015;16:130. [PMID: 26100407 DOI: 10.1186/s13059-015-0696-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
70 Eisinger-Mathason TS, Mucaj V, Biju KM, Nakazawa MS, Gohil M, Cash TP, Yoon SS, Skuli N, Park KM, Gerecht S, Simon MC. Deregulation of the Hippo pathway in soft-tissue sarcoma promotes FOXM1 expression and tumorigenesis. Proc Natl Acad Sci U S A 2015;112:E3402-11. [PMID: 26080399 DOI: 10.1073/pnas.1420005112] [Cited by in Crossref: 61] [Cited by in F6Publishing: 69] [Article Influence: 8.7] [Reference Citation Analysis]
71 Nath S, Ghatak D, Das P, Roychoudhury S. Transcriptional control of mitosis: deregulation and cancer. Front Endocrinol (Lausanne). 2015;6:60. [PMID: 25999914 DOI: 10.3389/fendo.2015.00060] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
72 Buchner M, Park E, Geng H, Klemm L, Flach J, Passegué E, Schjerven H, Melnick A, Paietta E, Kopanja D, Raychaudhuri P, Müschen M. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nat Commun 2015;6:6471. [PMID: 25753524 DOI: 10.1038/ncomms7471] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 4.0] [Reference Citation Analysis]
73 Meng FD, Wei JC, Qu K, Wang ZX, Wu QF, Tai MH, Liu HC, Zhang RY, Liu C. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol 2015; 21(1): 196-213 [PMID: 25574092 DOI: 10.3748/wjg.v21.i1.196] [Cited by in CrossRef: 43] [Cited by in F6Publishing: 44] [Article Influence: 6.1] [Reference Citation Analysis]
74 Zhang JR, Lu F, Lu T, Dong WH, Li P, Liu N, Ma DX, Ji CY. Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells. J Mol Med (Berl) 2014;92:1319-30. [PMID: 25179295 DOI: 10.1007/s00109-014-1198-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
75 Peake BF, Nahta R. Resistance to HER2-targeted therapies: a potential role for FOXM1. Breast Cancer Manag. 2014;3:423-431. [PMID: 25598845 DOI: 10.2217/bmt.14.33] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
76 Bilici A. Prognostic factors related with survival in patients with pancreatic adenocarcinoma. World J Gastroenterol 2014; 20(31): 10802-10812 [PMID: 25152583 DOI: 10.3748/wjg.v20.i31.10802] [Cited by in CrossRef: 78] [Cited by in F6Publishing: 76] [Article Influence: 9.8] [Reference Citation Analysis]
77 Cholewa BD, Pellitteri-Hahn MC, Scarlett CO, Ahmad N. Large-scale label-free comparative proteomics analysis of polo-like kinase 1 inhibition via the small-molecule inhibitor BI 6727 (Volasertib) in BRAF(V600E) mutant melanoma cells. J Proteome Res 2014;13:5041-50. [PMID: 24884503 DOI: 10.1021/pr5002516] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
78 Wen N, Wang Y, Wen L, Zhao SH, Ai ZH, Wang Y, Wu B, Lu HX, Yang H, Liu WC, Li Y. Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med 2014;12:134. [PMID: 24885308 DOI: 10.1186/1479-5876-12-134] [Cited by in Crossref: 49] [Cited by in F6Publishing: 58] [Article Influence: 6.1] [Reference Citation Analysis]
79 Ganguly R, Hong CS, Smith LG, Kornblum HI, Nakano I. Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther 2014;13:1393-8. [PMID: 24795222 DOI: 10.1158/1535-7163.MCT-13-0764] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Ganguly R, Hong CS, Smith LG, Kornblum HI, Nakano I. Maternal embryonic leucine zipper kinase: key kinase for stem cell phenotype in glioma and other cancers. Mol Cancer Ther. 2014;13:1393-1398. [PMID: 24795222 DOI: 10.1158/1535-7163.mct-13-0764] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
81 Rosenberg EE, Prudnikova TY, Zabarovsky ER, Kashuba VI, Grigorieva EV. D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells. Tumour Biol 2014;35:3237-45. [PMID: 24264315 DOI: 10.1007/s13277-013-1423-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]