1 |
Habbanakuppe Ramakrishnegowda D, Kampalapura Swamy C, Anil Kumar B, Rangappa S, Rangappa KS, Shivanna S. Ag mediated plasmonic AgO/ZnO composite and its pharmaceutical relevance. Materials Science and Engineering: B 2023;292:116437. [DOI: 10.1016/j.mseb.2023.116437] [Reference Citation Analysis]
|
2 |
Qian S, Zhang H, Sun X, Tan D, Tian F, Zhang T, Cui Y, Chen X, Liang X, Cai Z, Li L. Mesoporous silica-encapsulated Co-doped ceria nanodots with enhanced peroxidase-like activity enable intensive and long-lasting chemiluminescence for glutathione detection. Sensors and Actuators B: Chemical 2023;383:133609. [DOI: 10.1016/j.snb.2023.133609] [Reference Citation Analysis]
|
3 |
Wang G, Wang T, Dang Y, Lu Z, Su G, Feng B, Zhuo Y, Jiang X, Ye Q, Wu C, Pu X, Zhao Y, Zhao X, Cai S, Du S, Jia S, Wang Y, Wu D, Rao H, Sun M. Insights into the antibacterial mechanism of MoS2/CoS2 heterostructure nanozymes with double enzyme-like activities for MRSA-infected wound therapy. Chemical Engineering Journal 2023;461:141959. [DOI: 10.1016/j.cej.2023.141959] [Reference Citation Analysis]
|
4 |
Kanwal A, Saif B, Muhammad A, Liu W, Liu J, Ren H, Yang P, Lei Z. Hemoglobin-Promoted Growth of Polyhedral Gold Nanoparticles for the Detection of Glucose, H2O2, and Ascorbic Acid. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.3c00062] [Reference Citation Analysis]
|
5 |
Wu Y, Liu R, Liu J, Jia J, Zhou H, Yan B. The role of crystallinity of palladium nanocrystals in ROS generation and cytotoxicity induction. Nanoscale 2023. [PMID: 36912025 DOI: 10.1039/d2nr07148g] [Reference Citation Analysis]
|
6 |
Geng T, Zhang J, Wang Z, Shi Y, Shi Y, Zeng L. Ultrasmall gold decorated bimetallic metal-organic framework based nanoprobes for enhanced chemodynamic therapy with triple amplification. J Mater Chem B 2023;11:2249-57. [PMID: 36794807 DOI: 10.1039/d2tb02548e] [Reference Citation Analysis]
|
7 |
Ji X, Li Q, Su R, Wang Y, Qi W. Peroxidase-Mimicking Hierarchically Organized Gold Particles for Glucose Detection. Langmuir 2023;39:3216-24. [PMID: 36821815 DOI: 10.1021/acs.langmuir.2c02909] [Reference Citation Analysis]
|
8 |
Chen J, Wu H, Liu J, Su Y, Li H, Lin P, Chen Y, Xiao W, Cao D. Sb-doped FeOCl nanozyme-based biosensor for highly sensitive colorimetric detection of glutathione. Anal Bioanal Chem 2023;415:1205-19. [PMID: 36625896 DOI: 10.1007/s00216-022-04503-8] [Reference Citation Analysis]
|
9 |
Wang M, Zhu P, Liu S, Chen Y, Liang D, Liu Y, Chen W, Du L, Wu C. Application of Nanozymes in Environmental Monitoring, Management, and Protection. Biosensors 2023;13:314. [DOI: 10.3390/bios13030314] [Reference Citation Analysis]
|
10 |
Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Medicine 2023. [DOI: 10.1002/smmd.20220025] [Reference Citation Analysis]
|
11 |
Thenrajan T, Alwarappan S, Wilson J. Molecular Diagnosis and Cancer Prognosis-A Concise Review. Diagnostics (Basel) 2023;13. [PMID: 36832253 DOI: 10.3390/diagnostics13040766] [Reference Citation Analysis]
|
12 |
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. Nanomaterials (Basel) 2023;13. [PMID: 36839042 DOI: 10.3390/nano13040674] [Reference Citation Analysis]
|
13 |
Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration 2023. [DOI: 10.1002/exp.20210117] [Reference Citation Analysis]
|
14 |
Fang G, Kang R, Cai S, Ge C. Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: Progress, challenges and prospects. Nano Today 2023;48:101755. [DOI: 10.1016/j.nantod.2023.101755] [Reference Citation Analysis]
|
15 |
Yang Q, Wu D, Aziz A, Deng S, Zhou L, Chen W, Asif M, Wang S. Colorimetric platform based on synergistic effect between bacteriophage and AuPt nanozyme for determination of Yersinia pseudotuberculosis. Mikrochim Acta 2023;190:76. [PMID: 36708389 DOI: 10.1007/s00604-023-05643-z] [Reference Citation Analysis]
|
16 |
Liu Y, Sun M, Qiao W, Cong S, Zhang Y, Wang L, Hu Z, Liu F, Wang D, Wang P, Liu Q. Multicolor colorimetric visual detection of Staphylococcus aureus based on Fe(3)O(4)-Ag-MnO(2) composites nano-oxidative mimetic enzyme. Anal Chim Acta 2023;1239:340654. [PMID: 36628750 DOI: 10.1016/j.aca.2022.340654] [Reference Citation Analysis]
|
17 |
Chen M, Zhang H, Tian L, Lv H, Chen C, Liu X, Wang W, Wang Y, Zhao Y, Wang J, Zhou H, Mao Y, Xiong C, Wu Y. Solid Migration to Assemble a Flower-like Nanozyme with Highly Dense Single Copper Sites for Specific Phenol Oxidation. ACS Appl Mater Interfaces 2023;15:407-15. [PMID: 36575927 DOI: 10.1021/acsami.2c17231] [Reference Citation Analysis]
|
18 |
Zeng J, Ding C, Chen L, Yang B, Li M, Wang X, Su F, Liu C, Huang Y. Multienzyme-Mimicking Au@Cu(2)O with Complete Antioxidant Capacity for Reactive Oxygen Species Scavenging. ACS Appl Mater Interfaces 2023;15:378-90. [PMID: 36594213 DOI: 10.1021/acsami.2c16995] [Reference Citation Analysis]
|
19 |
Li C, Wu Y, Chen L, Liu Z, Gan S, Han D, Niu L, Qin D, Tao C. Oxygen Vacancy-Rich Amorphous BiVO4 Nanoparticles for Colorimetric Sensing. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.2c04265] [Reference Citation Analysis]
|
20 |
Zhao HT, Lang JY, Wang Z, Hu ZS, Bai CC, Wang XH. Bioconjugation of nanozyme and natural enzyme for ultrasensitive detection of cholesterol. Anal Sci 2023. [PMID: 36602698 DOI: 10.1007/s44211-022-00258-5] [Reference Citation Analysis]
|
21 |
Shan J, Liu X, Li X, Yu Y, Kong B, Ren L. Advances in antioxidative nanozymes for treating ischemic stroke. Engineered Regeneration 2023. [DOI: 10.1016/j.engreg.2023.01.001] [Reference Citation Analysis]
|
22 |
Sun Y, Xu B, Pan X, Wang H, Wu Q, Li S, Jiang B, Liu H. Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coordination Chemistry Reviews 2023;475:214896. [DOI: 10.1016/j.ccr.2022.214896] [Reference Citation Analysis]
|
23 |
Li K, Xu Z, Liu X, He Y, Tian X, Xu X, Bo G, Yuan S, Xu L, Yang M, Yan J, Zhang H, Yan Y. Mussel foot inspired bionic adhesive material enhanced by a reconstructed in vitro system for interfacial adhesion. Chemical Engineering Journal 2023;452:139580. [DOI: 10.1016/j.cej.2022.139580] [Reference Citation Analysis]
|
24 |
Zhang Y, Pershina L, Kudriashov D, Offenhäusser A, Mourzina Y. Influence of the chemically reduced graphene oxide interface on the antioxidant multienzyme properties of Prussian blue nanoparticles. Colloid and Interface Science Communications 2023;52:100689. [DOI: 10.1016/j.colcom.2022.100689] [Reference Citation Analysis]
|
25 |
Li Q, Zhang J, Wang Y, Min J, Shen Y, Liu W, Liu X, Su R, Qi W. Construction of Au/Cu hierarchically organized particles with dual-functional enzyme-like activity. Sci China Mater 2023. [DOI: 10.1007/s40843-022-2280-6] [Reference Citation Analysis]
|
26 |
Singh R, Umapathi A, Patel G, Patra C, Malik U, Bhargava SK, Daima HK. Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives. Science of The Total Environment 2023;854:158771. [DOI: 10.1016/j.scitotenv.2022.158771] [Reference Citation Analysis]
|
27 |
Lu J, Yang Y, Xu Q, Lin Y, Feng S, Mao Y, Wang D, Wang S, Zhao Q. Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coordination Chemistry Reviews 2023;474:214861. [DOI: 10.1016/j.ccr.2022.214861] [Reference Citation Analysis]
|
28 |
Chen Y, Yang G. Light-Mediated Modulation of Enzyme-Mimetic Activity of CuMnO(2) Nanosheets. J Phys Chem Lett 2022;13:11770-7. [PMID: 36516410 DOI: 10.1021/acs.jpclett.2c03204] [Reference Citation Analysis]
|
29 |
Mo F, Zhang M, Duan X, Lin C, Sun D, You T. Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. Int J Nanomedicine 2022;17:5947-90. [PMID: 36510620 DOI: 10.2147/IJN.S382796] [Reference Citation Analysis]
|
30 |
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. Small 2022;18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Reference Citation Analysis]
|
31 |
Kang G, Liu W, Liu F, Li Z, Dong X, Chen C, Lu Y. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chemical Engineering Journal 2022;449:137855. [DOI: 10.1016/j.cej.2022.137855] [Reference Citation Analysis]
|
32 |
Razavi M, Barras A, Szunerits S, Khoshkam M, Kompany-zareh M, Boukherroub R. A colorimetric assay and MCR-ALS analysis of the peroxidase-like activity of poly (N-phenylglycine) functionalized with polyethylene glycol (PNPG-PEG) nanozyme for the determination of dopamine. Analytica Chimica Acta 2022;1235:340493. [DOI: 10.1016/j.aca.2022.340493] [Reference Citation Analysis]
|
33 |
Gao Y, Wang Y, Wang Y, Magaud P, Liu Y, Zeng F, Yang J, Baldas L, Song Y. Nanocatalysis meets microfluidics: A powerful platform for sensitive bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116887] [Reference Citation Analysis]
|
34 |
Wang Y, Zulpya M, Zhang X, Xu S, Sun J, Dong B. Recent Advances of Metal-Organic Frameworks-based Nanozymes for Bio-applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2256-x] [Reference Citation Analysis]
|
35 |
Iravani S, Varma RS. MXene-Based Composites as Nanozymes in Biomedicine: A Perspective. Nanomicro Lett 2022;14:213. [PMID: 36333561 DOI: 10.1007/s40820-022-00958-7] [Reference Citation Analysis]
|
36 |
Zhe Y, Wang J, Zhao Z, Ren G, Du J, Li K, Lin Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114893] [Reference Citation Analysis]
|
37 |
aghayan M, mahmoudi A, sazegar M, Jahanafarin A, Nazari O, Hamidi P, Poorhasan Z, Shafaei BS. Design and Applications of Mesoporous Silica Nanoparticle loaded Copper as a Colorimetric Sensor for glutathione detection.. [DOI: 10.21203/rs.3.rs-2126392/v1] [Reference Citation Analysis]
|
38 |
Solra M, Das S, Srivastava A, Sen B, Rana S. Temporally Controlled Multienzyme Catalysis Using a Dissipative Supramolecular Nanozyme. ACS Appl Mater Interfaces 2022. [PMID: 36171536 DOI: 10.1021/acsami.2c08888] [Reference Citation Analysis]
|
39 |
Huang X. Introductory Chapter: Incredible Spicy Iron Oxide Nanoparticles. Iron Oxide Nanoparticles 2022. [DOI: 10.5772/intechopen.101982] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
40 |
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. Nanoscale 2022. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Reference Citation Analysis]
|
41 |
Zuo L, Hossain MA, Pokhrel B, Chang W, Shen H. Catalysis driven by biohybrid nanozyme. Advanced Sensor and Energy Materials 2022;1:100024. [DOI: 10.1016/j.asems.2022.100024] [Reference Citation Analysis]
|
42 |
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe3O4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022;:1-29. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Reference Citation Analysis]
|
43 |
Li X, Ding S, Lyu Z, Tieu P, Wang M, Feng Z, Pan X, Zhou Y, Niu X, Du D, Zhu W, Lin Y. Single‐Atomic Iron Doped Carbon Dots with Both Photoluminescence and Oxidase‐Like Activity. Small. [DOI: 10.1002/smll.202203001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Zhou L, Wang Y, Li S, Cao L, Jiang F, Maskow T, Liu Y. Core–Shell Polydopamine/Cu Nanometer Rods Efficiently Deactivate Microbes by Mimicking Chloride-Activated Peroxidases. ACS Omega. [DOI: 10.1021/acsomega.2c02986] [Reference Citation Analysis]
|
45 |
Zhang Y, Hu X, Shang J, Shao W, Jin L, Quan C, Li J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022;12:5995-6020. [PMID: 35966582 DOI: 10.7150/thno.73681] [Reference Citation Analysis]
|
46 |
Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-alhadad LA, Sharifi M. 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. Arabian Journal of Chemistry 2022;15:103966. [DOI: 10.1016/j.arabjc.2022.103966] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Hou G, Xu W, Guo M, Wang J, Wang Y, Suo A, Qian J. Full-active Cu2O/drug core/shell nanoparticles based on “grafting from” drug coordination polymerization combined with PD-1 blockade for efficient cancer therapy. Chemical Engineering Journal 2022;441:135993. [DOI: 10.1016/j.cej.2022.135993] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
48 |
Isho RD, Sher Mohammad NM, Omer KM. Enhancing enzymatic activity of Mn@Co3O4 nanosheets as mimetic nanozyme for colorimetric assay of ascorbic acid. Anal Biochem 2022;654:114818. [PMID: 35841925 DOI: 10.1016/j.ab.2022.114818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Chen F, Zhu H, Lv N, Li Q, Ma T, Wang L, Zhou M, Cao S, Luo X, Cheng C. π-Conjugated Copper Phthalocyanine Nanoparticles as Highly Sensitive Sensor for Colorimetric Detection of Biomarkers. Chemistry 2022;28:e202104591. [PMID: 35394659 DOI: 10.1002/chem.202104591] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
50 |
Gao F, Xiong Z, Jia Y, Li H, Li J. Cu-Boosted One-Pot Nanoarchitectonics for Synthesis of Polydopamine Membranes as Reusable Laccase Mimic. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.07.167] [Reference Citation Analysis]
|
51 |
Yang K, Xiu W, Li Y, Wang D, Wen Q, Yuwen L, Li X, Yin Z, Liang B, Wang L. NIR-responsive MoS2-Cu2WS4 nanosheets for catalytic/photothermal therapy of methicillin-resistant Staphylococcus aureus infections. Nanoscale 2022. [PMID: 35770918 DOI: 10.1039/d2nr01597h] [Reference Citation Analysis]
|
52 |
Stasyuk N, Demkiv O, Gayda G, Zakalskiy A, Klepach H, Bisko N, Gonchar M, Nisnevitch M. Highly Porous 3D Gold Enhances Sensitivity of Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles. Biosensors 2022;12:472. [DOI: 10.3390/bios12070472] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
53 |
Savchak OK, Wang N, Ramos-Docampo MA, de Dios Andres P, Sebastião AM, Ribeiro FF, Armada-Moreira A, Städler B, Vaz SH. Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells. J Mater Chem B 2022;10:4672-83. [PMID: 35674248 DOI: 10.1039/d2tb00393g] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
54 |
Maddheshiya S, Nara S. Recent Trends in Composite Nanozymes and Their Pro-Oxidative Role in Therapeutics. Front Bioeng Biotechnol 2022;10:880214. [PMID: 35711631 DOI: 10.3389/fbioe.2022.880214] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
55 |
Shi Y, Wu Q, Li W, Lin L, Qu F, Shen C, Wei Y, Nie P, He Y, Feng X. Ultra-sensitive detection of hydrogen peroxide and levofloxacin using a dual-functional fluorescent probe. J Hazard Mater 2022;432:128605. [PMID: 35286934 DOI: 10.1016/j.jhazmat.2022.128605] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
56 |
Li P, Feng Y, Cheng D, Wei J. Self-template synthesis of mesoporous vanadium oxide nanospheres with intrinsic peroxidase-like activity and high antibacterial performance. J Colloid Interface Sci 2022;625:435-45. [PMID: 35724466 DOI: 10.1016/j.jcis.2022.06.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
57 |
Zhang B, Lv Y, Yu C, Zhang W, Song S, Li Y, Chong Y, Huang J, Zhang Z. Au-Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomater Adv 2022;137:212869. [PMID: 35929245 DOI: 10.1016/j.bioadv.2022.212869] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
58 |
Chen M, Zhou X, Xiong C, Yuan T, Wang W, Zhao Y, Xue Z, Guo W, Wang Q, Wang H, Li Y, Zhou H, Wu Y. Facet Engineering of Nanoceria for Enzyme-Mimetic Catalysis. ACS Appl Mater Interfaces 2022;14:21989-95. [PMID: 35503925 DOI: 10.1021/acsami.2c04320] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
59 |
Hou R, Lu T, Gao W, Shen J, Yu Z, Li D, Zhang R, Zheng Y, Cai X. Prussian Blue Nanozyme Promotes the Survival Rate of Skin Flaps by Maintaining a Normal Microenvironment. ACS Nano 2022. [PMID: 35549154 DOI: 10.1021/acsnano.2c02832] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
60 |
Ma X, Tang K, Lu K, Yuan B, Shi W, Li Y, Zhao W. Programming a hollow core-shell CuS@CuSe heteromicrocubes synergizing superior multienzyme activity function as enhanced biosensing platforms. Sensors and Actuators B: Chemical 2022;359:131592. [DOI: 10.1016/j.snb.2022.131592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
61 |
Xie Y, Wang M, Sun Q, Wang D, Luo S, Li C. PtBi-β-CD-Ce6 Nanozyme for Combined Trimodal Imaging-Guided Photodynamic Therapy and NIR-II Responsive Photothermal Therapy. Inorg Chem 2022. [PMID: 35477242 DOI: 10.1021/acs.inorgchem.2c00168] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
62 |
Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
63 |
Wang R, Song C, Gao A, Liu Q, Guan W, Mei J, Ma L, Cui D. Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomater 2022;143:418-27. [PMID: 35219867 DOI: 10.1016/j.actbio.2022.02.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
64 |
Qiao X, Xue L, Huang H, Dai X, Chen Y, Ding H. Engineering defected 2D Pd/H-TiO2 nanosonosensitizers for hypoxia alleviation and enhanced sono-chemodynamic cancer nanotherapy. J Nanobiotechnology 2022;20:186. [PMID: 35413839 DOI: 10.1186/s12951-022-01398-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
65 |
Zhang X, Chen X, Zhao Y. Nanozymes: Versatile Platforms for Cancer Diagnosis and Therapy. Nanomicro Lett 2022;14:95. [PMID: 35384520 DOI: 10.1007/s40820-022-00828-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
66 |
Dang Y, Wang G, Su G, Lu Z, Wang Y, Liu T, Pu X, Wang X, Wu C, Song C, Zhao Q, Rao H, Sun M. Rational Construction of a Ni/CoMoO4 Heterostructure with Strong Ni-O-Co Bonds for Improving Multifunctional Nanozyme Activity. ACS Nano 2022;16:4536-50. [PMID: 35238531 DOI: 10.1021/acsnano.1c11012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
67 |
Songca SP, Adjei Y. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Int J Mol Sci 2022;23:3209. [PMID: 35328629 DOI: 10.3390/ijms23063209] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
68 |
Sanati A, Esmaeili Y, Bidram E, Shariati L, Rafienia M, Mahshid S, Parlak O. Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today 2022;26:101350. [DOI: 10.1016/j.apmt.2021.101350] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
69 |
Wang L, Zhou H, Hu H, Wang Q, Chen X. Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety. Foods 2022;11:544. [DOI: 10.3390/foods11040544] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
70 |
Stasyuk N, Demkiv O, Gayda G, Serkiz R, Zakalskiy A, Zakalska O, Klepach H, Al-maali G, Bisko N, Gonchar M. Highly Sensitive Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles Coupled with Porous Gold. IECB 2022 2022. [DOI: 10.3390/iecb2022-12251] [Reference Citation Analysis]
|
71 |
Li J, Wang S, Lin X, Cao Y, Cai Z, Wang J, Zhang Z, Liu X, Wu M, Yao C. Red Blood Cell-Mimic Nanocatalyst Triggering Radical Storm to Augment Cancer Immunotherapy. Nanomicro Lett 2022;14:57. [PMID: 35122163 DOI: 10.1007/s40820-022-00801-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
72 |
Qiu Z, Duan W, Cao S, Zeng T, Zhao T, Huang J, Lu X, Zeng J. Highly Specific Colorimetric Probe for Fluoride by Triggering the Intrinsic Catalytic Activity of a AgPt-Fe3O4 Hybrid Nanozyme Encapsulated in SiO2 Shells. Environ Sci Technol 2022. [PMID: 35015525 DOI: 10.1021/acs.est.1c06453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
73 |
Komkova MA, Zarochintsev AA, Karyakin AA. Nanozymes ‘artificial peroxidase’ in reduction and detection of organic peroxides. Journal of Electroanalytical Chemistry 2022;904:115902. [DOI: 10.1016/j.jelechem.2021.115902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
74 |
Ye H, Ding Y, Liu T, Li J, Wang Q, Li Y, Gu J, Zhang Z, Wang X. Colorimetric assay based on NiCo 2 S 4 @N,S-rGO nanozyme for sensitive detection of H 2 O 2 and glucose in serum and urine samples. RSC Adv 2022;12:20838-49. [DOI: 10.1039/d2ra03444a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
75 |
Jin G, Sun G, Fu C, Wang C, Ran G, Song Q. The enzymatic performance derived from the lattice planes of Ir nanoparticles. Catal Sci Technol 2022;12:1017-24. [DOI: 10.1039/d1cy01775f] [Reference Citation Analysis]
|
76 |
Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021;1:20210089. [DOI: 10.1002/exp.20210089] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 24.5] [Reference Citation Analysis]
|
77 |
Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. Exploration 2021;1:20210115. [DOI: 10.1002/exp.20210115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
|
78 |
Ying M, Yang G, Xu Y, Ye H, Lin X, Lu Y, Pan H, Bai Y, Du M. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst 2021;147:40-7. [PMID: 34816839 DOI: 10.1039/d1an01817e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
79 |
Cai X, Liang M, Ma F, Mohamed SR, Goda AA, Dawood DH, Yu L, Li P. A direct competitive nanozyme-linked immunosorbent assay based on MnO2 nanosheets as a catalytic label for the determination of fumonisin B1. Anal Methods 2021;13:5542-8. [PMID: 34792520 DOI: 10.1039/d1ay01654g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
80 |
Zhao DH, Li CQ, Hou XL, Xie XT, Zhang B, Wu GY, Jin F, Zhao YD, Liu B. Tumor Microenvironment-Activated Theranostics Nanozymes for Fluorescence Imaging and Enhanced Chemo-Chemodynamic Therapy of Tumors. ACS Appl Mater Interfaces 2021;13:55780-9. [PMID: 34787410 DOI: 10.1021/acsami.1c12611] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
81 |
Joshi KM, Shelar A, Kasabe U, Nikam LK, Pawar RA, Sangshetti J, Kale BB, Singh AV, Patil R, Chaskar MG. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112592] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
82 |
Ma Y, Zhao Y, Xu X, Ding S, Li Y. Magnetic covalent organic framework immobilized gold nanoparticles with high-efficiency catalytic performance for chemiluminescent detection of pesticide triazophos. Talanta 2021;235:122798. [PMID: 34517656 DOI: 10.1016/j.talanta.2021.122798] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
83 |
Zandieh M, Liu J. Nanozyme Catalytic Turnover and Self-Limited Reactions. ACS Nano 2021;15:15645-55. [PMID: 34623130 DOI: 10.1021/acsnano.1c07520] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
|
84 |
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021;11:9262-95. [PMID: 34646370 DOI: 10.7150/thno.64511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
85 |
Lewandowska H, Wójciuk K, Karczmarczyk U. Metal Nanozymes: New Horizons in Cellular Homeostasis Regulation. Applied Sciences 2021;11:9019. [DOI: 10.3390/app11199019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
86 |
Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nanomicro Lett 2021;13:193. [PMID: 34515917 DOI: 10.1007/s40820-021-00717-0] [Cited by in Crossref: 27] [Cited by in F6Publishing: 34] [Article Influence: 13.5] [Reference Citation Analysis]
|