1 |
Li Q, Liu X, Yan C, Zhao B, Zhao Y, Yang L, Shi M, Yu H, Li X, Luo K. Polysaccharide-Based Stimulus-Responsive Nanomedicines for Combination Cancer Immunotherapy. Small 2023;:e2206211. [PMID: 36890780 DOI: 10.1002/smll.202206211] [Reference Citation Analysis]
|
2 |
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. Nanomicro Lett 2023;15:44. [PMID: 36752939 DOI: 10.1007/s40820-023-01018-4] [Reference Citation Analysis]
|
3 |
Luo J, Miao Z, Huang X, Yang Y, Liu M, Shen G, Yang T. Translational albumin nanocarrier caging photosensitizer for efficient cancer photodynamic therapy. Front Bioeng Biotechnol 2023;11:1132591. [PMID: 36815900 DOI: 10.3389/fbioe.2023.1132591] [Reference Citation Analysis]
|
4 |
Zhou T, Huang J, Zhao W, Guo R, Cui S, Li Y, Kadasala NR, Jiang Y, Liu Y, Zhang Q. A multifunctional nanoplatform based on Fe3O4@Au NCs with magnetic targeting ability for single NIR light-triggered PTT/PDT synergistic therapy of cancer. Journal of Alloys and Compounds 2023. [DOI: 10.1016/j.jallcom.2023.169206] [Reference Citation Analysis]
|
5 |
Cao L, Feng Z, Guo R, Tian Q, Wang W, Rong X, Zhou M, Cheng C, Ma T, Deng D. The direct catalytic synthesis of ultrasmall Cu(2)O-coordinated carbon nitrides on ceria for multimodal antitumor therapy. Mater Horiz 2023. [PMID: 36723012 DOI: 10.1039/d2mh01540d] [Reference Citation Analysis]
|
6 |
Gao X, Feng J, Lv K, Zhou Y, Zhang R, Song S, Zhang H, Wang D. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res 2023. [DOI: 10.1007/s12274-022-5223-4] [Reference Citation Analysis]
|
7 |
Han G, Lin C, Yin H. Use of Glycine to Augment Exon Skipping and Cell Therapies for Duchenne Muscular Dystrophy. Methods in Molecular Biology 2023. [DOI: 10.1007/978-1-0716-2772-3_10] [Reference Citation Analysis]
|
8 |
Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. Biocatalysis and Agricultural Biotechnology 2022. [DOI: 10.1016/j.bcab.2022.102506] [Reference Citation Analysis]
|
9 |
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022;190:114554. [PMID: 36181993 DOI: 10.1016/j.addr.2022.114554] [Reference Citation Analysis]
|
10 |
Li Q, Shen X, Xing D. Carbon quantum dots as ROS-generator and -scavenger: A comprehensive review. Dyes and Pigments 2022. [DOI: 10.1016/j.dyepig.2022.110784] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
11 |
Güçlü E, Çınar Ayan İ, Dursun HG, Vural H. Tomentosin induces apoptosis in pancreatic cancer cells through increasing reactive oxygen species and decreasing mitochondrial membrane potential. Toxicol In Vitro 2022;84:105458. [PMID: 35988885 DOI: 10.1016/j.tiv.2022.105458] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
12 |
Xu Y, Liu R, Yang H, Qu S, Qian L, Dai Z. Enhancing Photodynamic Therapy Efficacy Against Cancer Metastasis by Ultrasound-Mediated Oxygen Microbubble Destruction to Boost Tumor-Targeted Delivery of Oxygen and Renal-Clearable Photosensitizer Micelles. ACS Appl Mater Interfaces 2022;14:25197-208. [PMID: 35615986 DOI: 10.1021/acsami.2c06655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Bai J, Majjigapu SR, Sordat B, Poty S, Vogel P, Elías-rodriguez P, Moreno-vargas AJ, Carmona AT, Caffa I, Ghanem M, Khalifa A, Monacelli F, Cea M, Robina I, Gajate C, Mollinedo F, Bellotti A, Nahimana A, Duchosal M, Nencioni A. Identification of new FK866 analogues with potent anticancer activity against pancreatic cancer. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114504] [Reference Citation Analysis]
|
14 |
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. Small Science. [DOI: 10.1002/smsc.202200012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
|
15 |
Mu D, Wang X, Wang H, Sun X, Dai Q, Lv P, Liu R, Qi Y, Xie J, Xu B, Zhang B. Chemiexcited Photodynamic Therapy Integrated in Polymeric Nanoparticles Capable of MRI Against Atherosclerosis. IJN 2022;Volume 17:2353-66. [DOI: 10.2147/ijn.s355790] [Reference Citation Analysis]
|
16 |
Guo G, Zhong D, Zhao T, Liu G, Li J, Zhao Q. NC/Ni–Co3O4@Co1−xS Nanosheet Prepared from Metal Organic Framework for Highly Efficient Overall Water Splitting. Catal Lett. [DOI: 10.1007/s10562-022-04014-2] [Reference Citation Analysis]
|
17 |
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews 2022;457:214423. [DOI: 10.1016/j.ccr.2022.214423] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
|
18 |
Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews 2022;9:011317. [DOI: 10.1063/5.0047672] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
19 |
Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022;10:847433. [DOI: 10.3389/fbioe.2022.847433] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Li J, Wang S, Lin X, Cao Y, Cai Z, Wang J, Zhang Z, Liu X, Wu M, Yao C. Red Blood Cell-Mimic Nanocatalyst Triggering Radical Storm to Augment Cancer Immunotherapy. Nanomicro Lett 2022;14:57. [PMID: 35122163 DOI: 10.1007/s40820-022-00801-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
21 |
Hou M, Chen W, Zhao J, Dai D, Yang M, Yi C. Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.01.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Greene MK, Johnston MC, Scott CJ. Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021;13:6175. [PMID: 34944794 DOI: 10.3390/cancers13246175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
|
23 |
Elveny M, Khan A, Nakhjiri AT, Albadarin AB. A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. Arabian Journal of Chemistry 2021;14:103352. [DOI: 10.1016/j.arabjc.2021.103352] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
24 |
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
|
25 |
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021;9:686303. [PMID: 34409014 DOI: 10.3389/fchem.2021.686303] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 23.5] [Reference Citation Analysis]
|
26 |
Wang X, Wu M, Zhang X, Li F, Zeng Y, Lin X, Liu X, Liu J. Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. J Nanobiotechnology 2021;19:204. [PMID: 34238297 DOI: 10.1186/s12951-021-00952-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
27 |
dos Santos AF, Arini GS, de Almeida DRQ, Labriola L. Nanophotosensitizers for cancer therapy: a promising technology? J Phys Mater 2021;4:032006. [DOI: 10.1088/2515-7639/abf7dd] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
28 |
Hurtado CR, Hurtado GR, Cena GL, Queiroz RC, Silva AV, Diniz MF, Santos VRD, Trava-Airoldi V, Baptista MDS, Tsolekile N, Oluwafemi OS, Conceição K, Tada DB. Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. Nanomaterials (Basel) 2021;11:1393. [PMID: 34070326 DOI: 10.3390/nano11061393] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
29 |
Niculescu A, Grumezescu AM. Photodynamic Therapy—An Up-to-Date Review. Applied Sciences 2021;11:3626. [DOI: 10.3390/app11083626] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 19.0] [Reference Citation Analysis]
|