BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan W, Wang K, Xu H, Huo X, Jin Q, Cui D. Machine Learning Approach to Enhance the Performance of MNP-Labeled Lateral Flow Immunoassay. Nanomicro Lett 2019;11:7. [PMID: 34137967 DOI: 10.1007/s40820-019-0239-3] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Yang D, Wang L, Jia T, Lian T, Yang K, Li X, Wang X, Xue C. Au/Fe(3)O(4)-based nanozymes with peroxidase-like activity integrated in immunochromatographic strips for highly-sensitive biomarker detection. Anal Methods 2023;15:663-74. [PMID: 36655548 DOI: 10.1039/d2ay01815b] [Reference Citation Analysis]
2 Kim ER, Joe C, Mitchell RJ, Gu MB. Biosensors for healthcare: current and future perspectives. Trends Biotechnol 2022:S0167-7799(22)00313-4. [PMID: 36567185 DOI: 10.1016/j.tibtech.2022.12.005] [Reference Citation Analysis]
3 Liu Y, He X, Zou J, Ouyang X, Huang C, Yang X, Wang Y. Detection of Carbohydrate Antigen 50 Based on a Novel Miniaturized Chemiluminescence Analyzer Enables Large-Scale Cancer Early Screening in Grassroots Community. Front Bioeng Biotechnol 2022;10:920972. [DOI: 10.3389/fbioe.2022.920972] [Reference Citation Analysis]
4 Shi Y, Ye P, Yang K, Qiaoge B, Xie J, Guo J, Wang C, Pan Z, Liu S, Guo J. A lab‐on‐disc centrifugal microfluidic system for ultraprecise plasma separation. Electrophoresis 2022. [DOI: 10.1002/elps.202100359] [Reference Citation Analysis]
5 Borri C, Centi S, Chioccioli S, Bogani P, Micheletti F, Gai M, Grandi P, Laschi S, Tona F, Barucci A, Zoppetti N, Pini R, Ratto F. Paper-based genetic assays with bioconjugated gold nanorods and an automated readout pipeline. Sci Rep 2022;12:6223. [PMID: 35418671 DOI: 10.1038/s41598-022-10227-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Wang K, Li T, Cao B, Xu H, Cheng Y, Zheng C, Zheng W, Cui D. Simulation and improvements of a magnetic flux sensor for application in immunomagnetic biosensing platforms. Sensors and Actuators A: Physical 2022;333:113299. [DOI: 10.1016/j.sna.2021.113299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Tsai Y, Yang T, Shen C, Cheng C. Paper-based immunoassays for mobile healthcare: strategies, challenges, and future applications. Paper-based Analytical Devices for Chemical Analysis and Diagnostics 2022. [DOI: 10.1016/b978-0-12-820534-1.00007-4] [Reference Citation Analysis]
8 Zheng C, Jiang Q, Wang K, Li T, Zheng W, Cheng Y, Ning Q, Cui D. Nanozyme enhanced magnetic immunoassay for dual-mode detection of gastrin-17. Analyst 2022;147:1678-1687. [DOI: 10.1039/d2an00063f] [Reference Citation Analysis]
9 Ginés I, Gaiani G, Ruhela A, Skouridou V, Campàs M, Masip L. Nucleic acid lateral flow dipstick assay for the duplex detection of Gambierdiscus australes and Gambierdiscus excentricus. Harmful Algae 2021;110:102135. [PMID: 34887012 DOI: 10.1016/j.hal.2021.102135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J, Yin M. 5G-Enabled intelligent construction of a chest pain center with up-conversion lateral flow immunoassay. Analyst 2021;146:7702-9. [PMID: 34812799 DOI: 10.1039/d1an01592c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li T, Wang K, Zheng C, Zheng W, Cheng Y, Ning Q, Xu H, Cui D. Magnetic frequency mixing technological advances for the practical improvement of point-of-care testing. Biotechnol Bioeng 2021. [PMID: 34859425 DOI: 10.1002/bit.28005] [Reference Citation Analysis]
12 Prabowo BA, Cabral PD, Freitas P, Fernandes E. The Challenges of Developing Biosensors for Clinical Assessment: A Review. Chemosensors 2021;9:299. [DOI: 10.3390/chemosensors9110299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Ji Y, Hu L, Xiong W, Wang Y, Yang F, Shi M, Zhang H, Shao J, Lu C, Fang D, Deng H, Bian Z, Tang G, Liu S, Fan Z, Liu S. Highly sensitive time-resolved fluoroimmunoassay for the quantitative onsite detection of Alternaria longipes in tobacco. J Appl Microbiol 2021. [PMID: 34312955 DOI: 10.1111/jam.15233] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Min HJ, Mina HA, Deering AJ, Bae E. Development of a smartphone-based lateral-flow imaging system using machine-learning classifiers for detection of Salmonella spp. J Microbiol Methods 2021;188:106288. [PMID: 34280431 DOI: 10.1016/j.mimet.2021.106288] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
15 Nishida S, Nakagawa M, Ouchi Y, Sakuma C, Nakajima Y, Shimizu H, Shibata T, Kurosawa Y, Maruyama T, Okumura CJ, Hatayama N, Sato Y, Asahara M, Ishigaki S, Furukawa T, Akuta T, Ono Y. A rabbit monoclonal antibody-mediated lateral flow immunoassay for rapid detection of CTX-M extended-spectrum β-lactamase-producing Enterobacterales. Int J Biol Macromol 2021;185:317-23. [PMID: 34129888 DOI: 10.1016/j.ijbiomac.2021.06.064] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Pan S, Zhang Y, Huang M, Deng Z, Zhang A, Pei L, Wang L, Zhao W, Ma L, Zhang Q, Cui D. Urinary exosomes-based Engineered Nanovectors for Homologously Targeted Chemo-Chemodynamic Prostate Cancer Therapy via abrogating EGFR/AKT/NF-kB/IkB signaling. Biomaterials 2021;275:120946. [PMID: 34119884 DOI: 10.1016/j.biomaterials.2021.120946] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
17 Bayin Q, Huang L, Ren C, Fu Y, Ma X, Guo J. Anti-SARS-CoV-2 IgG and IgM detection with a GMR based LFIA system. Talanta 2021;227:122207. [PMID: 33714475 DOI: 10.1016/j.talanta.2021.122207] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
18 Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Aptamer-based lateral flow assay on-site biosensors. Biosens Bioelectron 2021;186:113279. [PMID: 33979718 DOI: 10.1016/j.bios.2021.113279] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
19 Zheng C, Wang K, Zheng W, Cheng Y, Li T, Cao B, Jin Q, Cui D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021;146:1514-28. [PMID: 33595550 DOI: 10.1039/d0an02150d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
20 Ding S, Zhang N, Lyu Z, Zhu W, Chang Y, Hu X, Du D, Lin Y. Protein-based nanomaterials and nanosystems for biomedical applications: A review. Materials Today 2021;43:166-84. [DOI: 10.1016/j.mattod.2020.11.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
21 Liu X, Wang K, Cao B, Shen L, Ke X, Cui D, Zhong C, Li W. Multifunctional Nano-Sunflowers with Color-Magnetic-Raman Properties for Multimodal Lateral Flow Immunoassay. Anal Chem 2021;93:3626-34. [DOI: 10.1021/acs.analchem.0c05354] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
22 Hussain M, Chen Z, Lv M, Xu J, Dong X, Zhao J, Li S, Deng Y, He N, Li Z, Liu B. Rapid and label-free classification of pathogens based on light scattering, reduced power spectral features and support vector machine. Chinese Chemical Letters 2020;31:3163-7. [DOI: 10.1016/j.cclet.2020.04.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
23 Cui F, Yue Y, Zhang Y, Zhang Z, Zhou HS. Advancing Biosensors with Machine Learning. ACS Sens 2020;5:3346-64. [PMID: 33185417 DOI: 10.1021/acssensors.0c01424] [Cited by in Crossref: 96] [Cited by in F6Publishing: 111] [Article Influence: 32.0] [Reference Citation Analysis]
24 Cao B, Wang K, Xu H, Qin Q, Yang J, Zheng W, Jin Q, Cui D. Development of magnetic sensor technologies for point-of-care testing: Fundamentals, methodologies and applications. Sensors and Actuators A: Physical 2020;312:112130. [DOI: 10.1016/j.sna.2020.112130] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
25 Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020;145:2873-91. [PMID: 32141448 DOI: 10.1039/c9an02294e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
26 Wang K, Yang J, Xu H, Cao B, Qin Q, Liao X, Wo Y, Jin Q, Cui D. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal Bioanal Chem 2020;412:2517-28. [PMID: 32067065 DOI: 10.1007/s00216-020-02475-1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
27 Pan S, Pei L, Zhang A, Zhang Y, Zhang C, Huang M, Huang Z, Liu B, Wang L, Ma L, Zhang Q, Cui D. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials 2020;230:119606. [DOI: 10.1016/j.biomaterials.2019.119606] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 23.0] [Reference Citation Analysis]
28 Qin Q, Wang K, Yang J, Xu H, Cao B, Wo Y, Jin Q, Cui D. Algorithms for immunochromatographic assay: review and impact on future application. Analyst 2019;144:5659-76. [PMID: 31417996 DOI: 10.1039/c9an00964g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
29 Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 2020;145:2828-40. [DOI: 10.1039/c9an02485a] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 17.7] [Reference Citation Analysis]
30 Wang L, Zhou T, Niu Q, Hui Y, Hou Z. A Method and Device for Detecting the Number of Magnetic Nanoparticles Based on Weak Magnetic Signal. Processes 2019;7:480. [DOI: 10.3390/pr7080480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019;202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Cited by in Crossref: 87] [Cited by in F6Publishing: 92] [Article Influence: 21.8] [Reference Citation Analysis]
32 Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJA, Yamauchi Y. Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 2019;48:5717-51. [DOI: 10.1039/c9cs00174c] [Cited by in Crossref: 122] [Cited by in F6Publishing: 128] [Article Influence: 30.5] [Reference Citation Analysis]