BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ashraf MN, Asghar MW, Rong Y, Doschak MR, Kiang TKL. Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization. Eur J Drug Metab Pharmacokinet 2019;44:437-58. [DOI: 10.1007/s13318-018-0533-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Meirinho S, Rodrigues M, Fortuna A, Falcão A, Alves G. Study of the metabolic stability profiles of perampanel, rufinamide and stiripentol and prediction of drug interactions using HepaRG cells as an in vitro human model. Toxicol In Vitro 2022;:105389. [PMID: 35597399 DOI: 10.1016/j.tiv.2022.105389] [Reference Citation Analysis]
2 Liao FC, Wang YK, Cheng MY, Tu TY. A Preliminary Investigation of Embedding In Vitro HepaRG Spheroids into Recombinant Human Collagen Type I for the Promotion of Liver Differentiation. Polymers (Basel) 2022;14:1923. [PMID: 35567092 DOI: 10.3390/polym14091923] [Reference Citation Analysis]
3 Bouwmeester MC, Bernal PN, Oosterhoff LA, van Wolferen ME, Lehmann V, Vermaas M, Buchholz MB, Peiffer QC, Malda J, van der Laan LJW, Kramer NI, Schneeberger K, Levato R, Spee B. Bioprinting of Human Liver-Derived Epithelial Organoids for Toxicity Studies. Macromol Biosci 2021;:e2100327. [PMID: 34559943 DOI: 10.1002/mabi.202100327] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
4 Abbott A, Coburn JM. HepaRG Maturation in Silk Fibroin Scaffolds: Toward Developing a 3D In Vitro Liver Model. ACS Biomater Sci Eng 2021. [PMID: 34105934 DOI: 10.1021/acsbiomaterials.0c01584] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhu S, Rong Y, Kiang TKL. Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021;13:857. [PMID: 34207666 DOI: 10.3390/pharmaceutics13060857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
6 Agrawal G, Ramesh A, Aishwarya P, Sally J, Ravi M. Devices and techniques used to obtain and analyze three-dimensional cell cultures. Biotechnol Prog 2021;:e3126. [PMID: 33460298 DOI: 10.1002/btpr.3126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
7 Zhang CY, Flor S, Ruiz P, Dhakal R, Hu X, Teesch LM, Ludewig G, Lehmler HJ. 3,3'-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. Environ Sci Technol 2020;54:12345-57. [PMID: 32910851 DOI: 10.1021/acs.est.0c03476] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
8 Rong Y, Kiang TKL. Mechanisms of Metabolism Interaction Between p-Cresol and Mycophenolic Acid. Toxicological Sciences 2020;173:267-79. [DOI: 10.1093/toxsci/kfz231] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
9 Rong Y, Kiang TKL. Development and validation of a sensitive liquid-chromatography tandem mass spectrometry assay for mycophenolic acid and metabolites in HepaRG cell culture: Characterization of metabolism interactions between p-cresol and mycophenolic acid. Biomed Chromatogr 2019;33:e4549. [PMID: 30958902 DOI: 10.1002/bmc.4549] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population Pharmacokinetics of Mycophenolic Acid Co-Administered with Tacrolimus in Corticosteroid-Free Adult Kidney Transplant Patients. Clin Pharmacokinet 2019;58:1483-95. [DOI: 10.1007/s40262-019-00771-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]