BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gomez J, Doukky R, Germano G, Slomka P. New Trends in Quantitative Nuclear Cardiology Methods. Curr Cardiovasc Imaging Rep 2018;11:1. [PMID: 30294409 DOI: 10.1007/s12410-018-9443-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Hage FG, Einstein AJ, Ananthasubramaniam K, Bourque JM, Case J, DePuey EG, Hendel RC, Henzlova MJ, Shah NR, Abbott BG, Al Jaroudi W, Better N, Doukky R, Duvall WL, Malhotra S, Pagnanelli R, Peix A, Reyes E, Saeed IM, Sanghani RM, Slomka PJ, Thompson RC, Veeranna V, Williams KA Sr, Winchester DE. Quality metrics for single-photon emission computed tomography myocardial perfusion imaging: an ASNC information statement. J Nucl Cardiol 2023. [PMID: 36607538 DOI: 10.1007/s12350-022-03162-7] [Reference Citation Analysis]
2 Kotina E, Ploskikh V, Shirokolobov A. Digital Image Processing in Nuclear Medicine. Phys Part Nuclei 2022;53:535-40. [DOI: 10.1134/s1063779622020435] [Reference Citation Analysis]
3 Bhadri K, Karnik N, Dhatrak P. Current Advancements in Cardiovascular Disease Management using Artificial Intelligence and Machine Learning Models: Current Scenario and Challenges. 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22) 2022. [DOI: 10.1109/icetet-sip-2254415.2022.9791776] [Reference Citation Analysis]
4 Garcia EV, Piccinelli M. Preparing for the Artificial Intelligence Revolution in Nuclear Cardiology. Nucl Med Mol Imaging. [DOI: 10.1007/s13139-021-00733-3] [Reference Citation Analysis]
5 Piccinelli M, Garcia EV. Cardiac Nuclear Medicine: The Role of Artificial Intelligence. Artificial Intelligence in Cardiothoracic Imaging 2022. [DOI: 10.1007/978-3-030-92087-6_37] [Reference Citation Analysis]
6 Wilson M, Chopra R, Wilson MZ, Cooper C, MacWilliams P, Liu Y, Wulczyn E, Florea D, Hughes CO, Karthikesalingam A, Khalid H, Vermeirsch S, Nicholson L, Keane PA, Balaskas K, Kelly CJ. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning. JAMA Ophthalmol 2021. [PMID: 34236406 DOI: 10.1001/jamaophthalmol.2021.2273] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
7 de Souza-filho EM, de Amorim Fernandes F. Deep Learning and Artificial Intelligence in Nuclear Cardiology. Nuclear Cardiology 2021. [DOI: 10.1007/978-3-030-62195-7_32] [Reference Citation Analysis]
8 Polidori A, Salvatore C, Castiglioni I, Cerasa A. The eye of nuclear medicine. Clin Transl Imaging 2019;7:233-5. [DOI: 10.1007/s40336-019-00340-5] [Reference Citation Analysis]
9 Nappi C, Gaudieri V, Cuocolo A. Behind Traditional Semi-quantitative Scores of Myocardial Perfusion Imaging: An Eye on Niche Parameters. Eur Cardiol 2019;14:13-7. [PMID: 31131032 DOI: 10.15420/ecr.2019.5.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
10 Gomez J, Doukky R. Artificial Intelligence in Nuclear Cardiology. J Nucl Med 2019;60:1042-3. [DOI: 10.2967/jnumed.118.222356] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]