BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jacq X, Kemp M, Martin NM, Jackson SP. Deubiquitylating enzymes and DNA damage response pathways. Cell Biochem Biophys 2013;67:25-43. [PMID: 23712866 DOI: 10.1007/s12013-013-9635-3] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S, Nijnik A. USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol 2019;72:1-8. [PMID: 30639577 DOI: 10.1016/j.exphem.2019.01.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
2 Yang J, Meng C, Weisberg E, Case A, Lamberto I, Magin RS, Adamia S, Wang J, Gray N, Liu S, Stone R, Sattler M, Buhrlage S, Griffin JD. Inhibition of the deubiquitinase USP10 induces degradation of SYK. Br J Cancer 2020;122:1175-84. [PMID: 32015510 DOI: 10.1038/s41416-020-0731-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
3 Baymaz HI, Fournier A, Laget S, Ji Z, Jansen PWTC, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, Defossez P, Vermeulen M. MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics 2014;14:2179-89. [DOI: 10.1002/pmic.201400013] [Cited by in Crossref: 57] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
4 Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014;50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
5 Gao M, Guo G, Huang J, Kloeber JA, Zhao F, Deng M, Tu X, Kim W, Zhou Q, Zhang C, Yin P, Luo K, Lou Z. USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat Commun 2020;11:5362. [PMID: 33097710 DOI: 10.1038/s41467-020-19202-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
6 Ma M, Yu N. Ubiquitin-specific protease 7 expression is a prognostic factor in epithelial ovarian cancer and correlates with lymph node metastasis. Onco Targets Ther 2016;9:1559-69. [PMID: 27051296 DOI: 10.2147/OTT.S100050] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
7 Wang Y, Chang J, Shao L, Feng W, Luo Y, Chow M, Du W, Meng A, Zhou D. Hematopoietic Stem Cells from Ts65Dn Mice Are Deficient in the Repair of DNA Double-Strand Breaks. Radiat Res 2016;185:630-7. [PMID: 27243896 DOI: 10.1667/RR14407.1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
8 Zlatanou A, Sabbioneda S, Miller ES, Greenwalt A, Aggathanggelou A, Maurice MM, Lehmann AR, Stankovic T, Reverdy C, Colland F, Vaziri C, Stewart GS. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 2016;35:965-76. [PMID: 25961918 DOI: 10.1038/onc.2015.149] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
9 Masoumi KC, Marfany G, Wu Y, Massoumi R. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Future Oncol 2016;12:565-74. [PMID: 26777062 DOI: 10.2217/fon.15.320] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
10 Wertz IE, Murray JM. Structurally-defined deubiquitinase inhibitors provide opportunities to investigate disease mechanisms. Drug Discov Today Technol 2019;31:109-23. [PMID: 31200854 DOI: 10.1016/j.ddtec.2019.02.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
11 Marsh DJ. Networks regulating ubiquitin and ubiquitin-like proteins promise new therapeutic targets. Endocr Relat Cancer 2015;22:E1-3. [PMID: 25549994 DOI: 10.1530/ERC-14-0585] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
12 Ward JA, Pinto-Fernandez A, Cornelissen L, Bonham S, Díaz-Sáez L, Riant O, Huber KVM, Kessler BM, Feron O, Tate EW. Re-Evaluating the Mechanism of Action of α,β-Unsaturated Carbonyl DUB Inhibitors b-AP15 and VLX1570: A Paradigmatic Example of Unspecific Protein Cross-linking with Michael Acceptor Motif-Containing Drugs. J Med Chem 2020;63:3756-62. [PMID: 32109059 DOI: 10.1021/acs.jmedchem.0c00144] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
13 Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D, Nijnik A. Deubiquitinase MYSM1 in the Hematopoietic System and beyond: A Current Review. Int J Mol Sci 2020;21:E3007. [PMID: 32344625 DOI: 10.3390/ijms21083007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
14 Liu J, Kruswick A, Dang H, Tran AD, Kwon SM, Wang XW, Oberdoerffer P. Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 2017;8:137. [PMID: 28743957 DOI: 10.1038/s41467-017-00206-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
15 Das S, Chandrasekaran AP, Jo KS, Ko NR, Oh SJ, Kim KS, Ramakrishna S. HAUSP stabilizes Cdc25A and protects cervical cancer cells from DNA damage response. Biochim Biophys Acta Mol Cell Res 2020;1867:118835. [PMID: 32860838 DOI: 10.1016/j.bbamcr.2020.118835] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Smits VA, Freire R. USP7/HAUSP: A SUMO deubiquitinase at the heart of DNA replication. Bioessays 2016;38:863-8. [PMID: 27374980 DOI: 10.1002/bies.201600096] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
17 Harrigan J, Jacq X. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Methods Mol Biol 2016;1449:395-410. [PMID: 27613052 DOI: 10.1007/978-1-4939-3756-1_26] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
18 Lim KH, Park JJ, Gu BH, Kim JO, Park SG, Baek KH. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response. Sci Rep 2015;5:12793. [PMID: 26238070 DOI: 10.1038/srep12793] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
19 Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014;23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
20 Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 2017;7:20-37. [PMID: 28003236 DOI: 10.1158/2159-8290.CD-16-0860] [Cited by in Crossref: 255] [Cited by in F6Publishing: 149] [Article Influence: 42.5] [Reference Citation Analysis]
21 Martín Y, Cabrera E, Amoedo H, Hernández-Pérez S, Domínguez-Kelly R, Freire R. USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene 2015;34:1058-63. [PMID: 24632611 DOI: 10.1038/onc.2014.38] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
22 Kessler BM. Selective and reversible inhibitors of ubiquitin-specific protease 7: a patent evaluation (WO2013030218). Expert Opin Ther Pat 2014;24:597-602. [PMID: 24456106 DOI: 10.1517/13543776.2014.882320] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
23 Vlasschaert C, Xia X, Coulombe J, Gray DA. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol Biol 2015;15:230. [PMID: 26503449 DOI: 10.1186/s12862-015-0511-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
24 Mao X, Ji M, Kang L, Qin B, Luo J, Zhang W, Wu A, Yuan Y, Zhang G, Guan H. XRCC5 downregulated by TRIM25 is susceptible for lens epithelial cell apoptosis. Cell Signal 2022;94:110314. [PMID: 35331835 DOI: 10.1016/j.cellsig.2022.110314] [Reference Citation Analysis]
25 Katsogiannou M, Boyer JB, Valdeolivas A, Remy E, Calzone L, Audebert S, Rocchi P, Camoin L, Baudot A. Integrative proteomic and phosphoproteomic profiling of prostate cell lines. PLoS One 2019;14:e0224148. [PMID: 31675377 DOI: 10.1371/journal.pone.0224148] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kemp M. Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. Prog Med Chem 2016;55:149-92. [PMID: 26852935 DOI: 10.1016/bs.pmch.2015.10.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
27 Zhen Y, Knobel PA, Stracker TH, Reverter D. Regulation of USP28 deubiquitinating activity by SUMO conjugation. J Biol Chem 2014;289:34838-50. [PMID: 25359778 DOI: 10.1074/jbc.M114.601849] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
28 Papp SJ, Huber AL, Jordan SD, Kriebs A, Nguyen M, Moresco JJ, Yates JR, Lamia KA. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 2015;4. [PMID: 25756610 DOI: 10.7554/eLife.04883] [Cited by in Crossref: 53] [Cited by in F6Publishing: 39] [Article Influence: 7.6] [Reference Citation Analysis]
29 Ward JA, McLellan L, Stockley M, Gibson KR, Whitlock GA, Knights C, Harrigan JA, Jacq X, Tate EW. Quantitative Chemical Proteomic Profiling of Ubiquitin Specific Proteases in Intact Cancer Cells. ACS Chem Biol 2016;11:3268-72. [PMID: 27779380 DOI: 10.1021/acschembio.6b00766] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
30 Özen A, Rougé L, Bashore C, Hearn BR, Skelton NJ, Dueber EC. Selectively Modulating Conformational States of USP7 Catalytic Domain for Activation. Structure 2018;26:72-84.e7. [PMID: 29249604 DOI: 10.1016/j.str.2017.11.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
31 Guturi KKN, Bohgaki M, Bohgaki T, Srikumar T, Ng D, Kumareswaran R, El Ghamrasni S, Jeon J, Patel P, Eldin MS, Bristow R, Cheung P, Stewart GS, Raught B, Hakem A, Hakem R. RNF168 and USP10 regulate topoisomerase IIα function via opposing effects on its ubiquitylation. Nat Commun 2016;7:12638. [PMID: 27558965 DOI: 10.1038/ncomms12638] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
32 Tsuchida S, Nakayama T. Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021;22:5488. [PMID: 34070986 DOI: 10.3390/ijms22115488] [Reference Citation Analysis]
33 Kim JJ, Lee SY, Hwang Y, Kim S, Chung JM, Park S, Yoon J, Yun H, Ji JH, Chae S, Cho H, Kim CG, Dawson TM, Kim H, Dawson VL, Kang HC. USP39 promotes non-homologous end-joining repair by poly(ADP-ribose)-induced liquid demixing. Nucleic Acids Res 2021;49:11083-102. [PMID: 34614178 DOI: 10.1093/nar/gkab892] [Reference Citation Analysis]
34 Prajapati P, Gohel D, Shinde A, Roy M, Singh K, Singh R. TRIM32 regulates mitochondrial mediated ROS levels and sensitizes the oxidative stress induced cell death. Cell Signal 2020;76:109777. [PMID: 32918979 DOI: 10.1016/j.cellsig.2020.109777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
35 Cole AJ, Clifton-Bligh R, Marsh DJ. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer 2015;22:T19-33. [PMID: 24891457 DOI: 10.1530/ERC-14-0185] [Cited by in Crossref: 71] [Cited by in F6Publishing: 48] [Article Influence: 8.9] [Reference Citation Analysis]
36 van Cuijk L, Vermeulen W, Marteijn JA. Ubiquitin at work: The ubiquitous regulation of the damage recognition step of NER. Experimental Cell Research 2014;329:101-9. [DOI: 10.1016/j.yexcr.2014.07.018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
37 Olazabal-herrero A, García-santisteban I, Rodríguez JA. Mutations in the ‘Fingers’ subdomain of the deubiquitinase USP1 modulate its function and activity. FEBS J 2016;283:929-46. [DOI: 10.1111/febs.13648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
38 Li J, Li Y, Xu F, Sun B, Yang L, Wang H. Deubiquitinating enzyme PSMD14 facilitates gastric carcinogenesis through stabilizing PTBP1. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113148] [Reference Citation Analysis]
39 Tanguturi P, Kim KS, Ramakrishna S. The role of deubiquitinating enzymes in cancer drug resistance. Cancer Chemother Pharmacol 2020;85:627-39. [PMID: 32146496 DOI: 10.1007/s00280-020-04046-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, Fang Y, Wu P, Liu T, Lou Z. HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res 2014;42:13110-21. [PMID: 25355518 DOI: 10.1093/nar/gku1034] [Cited by in Crossref: 51] [Cited by in F6Publishing: 39] [Article Influence: 6.4] [Reference Citation Analysis]
41 Wang Y, Tian J, Huang C, Ma J, Hu G, Chen Y, Wang T, Cai R, Zuo Y, Tan H, Fan Q, Dong B, Xue W, Yi J, Chen G, Tu J, Cheng J. P53 suppresses SENP3 phosphorylation to mediate G2 checkpoint. Cell Discov 2020;6:21. [PMID: 33879772 DOI: 10.1038/s41421-020-0154-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Zhang L, Gong F. Involvement of USP24 in the DNA damage response. Mol Cell Oncol 2016;3:e1011888. [PMID: 27308530 DOI: 10.1080/23723556.2015.1011888] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
43 Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15:465-481. [PMID: 24954209 DOI: 10.1038/nrm3822] [Cited by in Crossref: 575] [Cited by in F6Publishing: 520] [Article Influence: 71.9] [Reference Citation Analysis]
44 Spiliotopoulos A, Blokpoel Ferreras L, Densham RM, Caulton SG, Maddison BC, Morris JR, Dixon JE, Gough KC, Dreveny I. Discovery of peptide ligands targeting a specific ubiquitin-like domain-binding site in the deubiquitinase USP11. J Biol Chem 2019;294:424-36. [PMID: 30373771 DOI: 10.1074/jbc.RA118.004469] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
45 Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. J Mol Biol 2017;429:3409-29. [PMID: 28587922 DOI: 10.1016/j.jmb.2017.05.029] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
46 Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015;5:150018. [PMID: 25833379 DOI: 10.1098/rsob.150018] [Cited by in Crossref: 93] [Cited by in F6Publishing: 86] [Article Influence: 15.5] [Reference Citation Analysis]
47 Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016;7:133. [PMID: 27516771 DOI: 10.3389/fgene.2016.00133] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
48 Páhi ZG, Kovács L, Szűcs D, Borsos BN, Deák P, Pankotai T. Usp5, Usp34, and Otu1 deubiquitylases mediate DNA repair in Drosophila melanogaster. Sci Rep 2022;12:5870. [PMID: 35393473 DOI: 10.1038/s41598-022-09703-x] [Reference Citation Analysis]
49 Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021;48:102194. [PMID: 34814083 DOI: 10.1016/j.redox.2021.102194] [Reference Citation Analysis]
50 Knobel PA, Belotserkovskaya R, Galanty Y, Schmidt CK, Jackson SP, Stracker TH. USP28 is recruited to sites of DNA damage by the tandem BRCT domains of 53BP1 but plays a minor role in double-strand break metabolism. Mol Cell Biol 2014;34:2062-74. [PMID: 24687851 DOI: 10.1128/MCB.00197-14] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
51 Agathanggelou A, Smith E, Davies NJ, Kwok M, Zlatanou A, Oldreive CE, Mao J, Da Costa D, Yadollahi S, Perry T, Kearns P, Skowronska A, Yates E, Parry H, Hillmen P, Reverdy C, Delansorne R, Paneesha S, Pratt G, Moss P, Taylor AMR, Stewart GS, Stankovic T. USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Blood 2017;130:156-66. [PMID: 28495793 DOI: 10.1182/blood-2016-12-758219] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
52 Kyrieleis OJP, McIntosh PB, Webb SR, Calder LJ, Lloyd J, Patel NA, Martin SR, Robinson CV, Rosenthal PB, Smerdon SJ. Three-Dimensional Architecture of the Human BRCA1-A Histone Deubiquitinase Core Complex. Cell Rep 2016;17:3099-106. [PMID: 28009280 DOI: 10.1016/j.celrep.2016.11.063] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
53 Gorrepati KDD, Lupse B, Annamalai K, Yuan T, Maedler K, Ardestani A. Loss of Deubiquitinase USP1 Blocks Pancreatic β-Cell Apoptosis by Inhibiting DNA Damage Response. iScience 2018;1:72-86. [PMID: 30227958 DOI: 10.1016/j.isci.2018.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Lawson AP, Bak DW, Shannon DA, Long MJC, Vijaykumar T, Yu R, Oualid FE, Weerapana E, Hedstrom L. Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget 2017;8:51296-316. [PMID: 28881649 DOI: 10.18632/oncotarget.17261] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
55 Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 2018;17:57-78. [PMID: 28959952 DOI: 10.1038/nrd.2017.152] [Cited by in Crossref: 238] [Cited by in F6Publishing: 228] [Article Influence: 47.6] [Reference Citation Analysis]
56 Liu H, Zhang H, Wang X, Tian Q, Hu Z, Peng C, Jiang P, Wang T, Guo W, Chen Y, Li X, Zhang P, Pei H. The Deubiquitylating Enzyme USP4 Cooperates with CtIP in DNA Double-Strand Break End Resection. Cell Rep 2015;13:93-107. [PMID: 26387952 DOI: 10.1016/j.celrep.2015.08.056] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
57 Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 2015;15:166-80. [PMID: 25709118 DOI: 10.1038/nrc3891] [Cited by in Crossref: 287] [Cited by in F6Publishing: 270] [Article Influence: 41.0] [Reference Citation Analysis]
58 Cai J, Chen HY, Peng SJ, Meng JL, Wang Y, Zhou Y, Qian XP, Sun XY, Pang XW, Zhang Y, Zhang J. USP7-TRIM27 axis negatively modulates antiviral type I IFN signaling. FASEB J 2018;32:5238-49. [PMID: 29688809 DOI: 10.1096/fj.201700473RR] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
59 Kroeger C, Roesler R, Wiese S, Hainzl A, Gatzka MV. Interaction of Deubiquitinase 2A-DUB/MYSM1 with DNA Repair and Replication Factors. Int J Mol Sci 2020;21:E3762. [PMID: 32466590 DOI: 10.3390/ijms21113762] [Reference Citation Analysis]
60 Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 2019;52:181-9. [PMID: 30760385 [PMID: 30760385 DOI: 10.5483/bmbrep.2019.52.3.048] [Cited by in Crossref: 28] [Article Influence: 9.3] [Reference Citation Analysis]
61 McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016;311:L719-33. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
62 Ge C, Che L, Ren J, Pandita RK, Lu J, Li K, Pandita TK, Du C. BRUCE regulates DNA double-strand break response by promoting USP8 deubiquitination of BRIT1. Proc Natl Acad Sci USA. 2015;112:E1210-E1219. [PMID: 25733871 DOI: 10.1073/pnas.1418335112] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
63 Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020;8:717. [PMID: 32850836 DOI: 10.3389/fcell.2020.00717] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Chen L, Shi Y, Liu N, Wang Z, Yang R, Yan B, Liu X, Lai W, Liu Y, Xiao D, Zhou H, Cheng Y, Cao Y, Liu S, Xia Z, Tao Y. DNA methylation modifier LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism. Epigenetics Chromatin 2019;12:59. [PMID: 31594538 DOI: 10.1186/s13072-019-0302-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
65 Heideker J, Wertz IE. DUBs, the regulation of cell identity and disease. Biochem J 2015;465:1-26. [PMID: 25631680 DOI: 10.1042/BJ20140496] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
66 Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015;6:282. [PMID: 26442100 DOI: 10.3389/fgene.2015.00282] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
67 Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett 2014;588:356-67. [PMID: 24239534 DOI: 10.1016/j.febslet.2013.11.003] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 5.7] [Reference Citation Analysis]
68 Yates M, Maréchal A. Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Int J Mol Sci 2018;19:E2909. [PMID: 30257459 DOI: 10.3390/ijms19102909] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]