BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: L'Heureux M, Sternberg M, Brath L, Turlington J, Kashiouris MG. Sepsis-Induced Cardiomyopathy: a Comprehensive Review. Curr Cardiol Rep 2020;22:35. [PMID: 32377972 DOI: 10.1007/s11886-020-01277-2] [Cited by in Crossref: 53] [Cited by in F6Publishing: 61] [Article Influence: 26.5] [Reference Citation Analysis]
Number Citing Articles
1 Mu Q, Zhang C, Li R, Guo Z. CircPalm2 knockdown alleviates LPS-evoked pulmonary microvascular endothelial cell apoptosis and inflammation via miR-450b-5p/ROCK1 axis. International Immunopharmacology 2022;113:109199. [DOI: 10.1016/j.intimp.2022.109199] [Reference Citation Analysis]
2 Song J, Yao Y, Lin S, He Y, Zhu D, Zhong M. Feasibility and discriminatory value of tissue motion annular displacement in sepsis-induced cardiomyopathy: a single-center retrospective observational study. Crit Care 2022;26:220. [DOI: 10.1186/s13054-022-04095-w] [Reference Citation Analysis]
3 Yuan L, Tang Y, Yin L, Lin X, Luo Z, Wang S, Li J, Liang P, Jiang B. Microarray Analysis Reveals Changes in tRNA-Derived Small RNAs (tsRNAs) Expression in Mice with Septic Cardiomyopathy. Genes 2022;13:2258. [DOI: 10.3390/genes13122258] [Reference Citation Analysis]
4 Liu W, Guo X, Jin L, Hong T, Zhang Q, Su F, Shen Y, Li S, He B. Lipocalin-2 participates in sepsis-induced myocardial injury by mediating lipid accumulation and mitochondrial dysfunction. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.1009726] [Reference Citation Analysis]
5 Liao J, Su X, Wang M, Jiang L, Chen X, Liu Z, Tang G, Zhou L, Li H, Lv X, Yin J, Wang H, Wang Y. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Translational Research 2022. [DOI: 10.1016/j.trsl.2022.11.006] [Reference Citation Analysis]
6 Higny J, Bulpa P, Berners Y. Strain echocardiography in a sepsis‐induced cardiomyopathy. Clinical Case Reports 2022;10. [DOI: 10.1002/ccr3.6502] [Reference Citation Analysis]
7 Fu W, Fang X, Wu L, Hu W, Yang T. Neogambogic acid relieves myocardial injury induced by sepsis via p38 MAPK/NF-κB pathway. Korean J Physiol Pharmacol 2022;26:511-8. [PMID: 36302625 DOI: 10.4196/kjpp.2022.26.6.511] [Reference Citation Analysis]
8 Erdem S, Das A, Ismail R, Makki H, Hakim A. UTI-Associated Septic Cardiomyopathy: Saving the Heart in the Nick of Time. Cureus 2022. [DOI: 10.7759/cureus.29957] [Reference Citation Analysis]
9 Shen XD, Zhang HS, Zhang R, Li J, Zhou ZG, Jin ZX, Wang YJ. Progress in the Clinical Assessment and Treatment of Myocardial Depression in Critically Ill Patient with Sepsis. J Inflamm Res 2022;15:5483-90. [PMID: 36164659 DOI: 10.2147/JIR.S379905] [Reference Citation Analysis]
10 Chen Z, Cao Z, Gui F, Zhang M, Wu X, Peng H, Yu B, Li W, Ai F, Zhang J. TMEM43 Protects against Sepsis-Induced Cardiac Injury via Inhibiting Ferroptosis in Mice. Cells 2022;11:2992. [DOI: 10.3390/cells11192992] [Reference Citation Analysis]
11 Xue W, Pang J, Liu J, Wang H, Guo H, Chen Y. Septic cardiomyopathy: characteristics, evaluation, and mechanism. Emerg Crit Care Med 2022;2:135-147. [DOI: 10.1097/ec9.0000000000000060] [Reference Citation Analysis]
12 Geng F, Liu W, Yu L. MicroRNA-451a and Th1/Th2 ratio inform inflammation, septic organ injury, and mortality risk in sepsis patients. Front Microbiol 2022;13:947139. [DOI: 10.3389/fmicb.2022.947139] [Reference Citation Analysis]
13 Timpau AS, Miftode RS, Leca D, Timpau R, Miftode IL, Petris AO, Costache II, Mitu O, Nicolae A, Oancea A, Jigoranu A, Tuchilus CG, Miftode EG. A Real Pandora's Box in Pandemic Times: A Narrative Review on the Acute Cardiac Injury Due to COVID-19. Life (Basel) 2022;12:1085. [PMID: 35888173 DOI: 10.3390/life12071085] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Suo S, Luo L, Song Y, Huang H, Chen X, Liu C, Hashmi MF. Early Diagnosis and Prediction of Death Risk in Patients with Sepsis by Combined Detection of Serum PCT, BNP, Lactic Acid, and Apache II Score. Contrast Media & Molecular Imaging 2022;2022:1-6. [DOI: 10.1155/2022/8522842] [Reference Citation Analysis]
15 von Samson-himmelstjerna FA, Kolbrink B, Riebeling T, Kunzendorf U, Krautwald S. Progress and Setbacks in Translating a Decade of Ferroptosis Research into Clinical Practice. Cells 2022;11:2134. [DOI: 10.3390/cells11142134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Shrivastava A, Bansal S, Varshney S. A Prospective Observational Study to Determine Incidence and Outcome of Sepsis-induced Cardiomyopathy in an Intensive Care Unit. Indian Journal of Critical Care Medicine 2022;26:798-803. [DOI: 10.5005/jp-journals-10071-24204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Samavedam S. Sepsis and the Heart: More to Learn. Indian Journal of Critical Care Medicine 2022;26:775-7. [DOI: 10.5005/jp-journals-10071-24262] [Reference Citation Analysis]
18 Luo Q, Ma H, Guo E, Yu L, Jia L, Zhang B, Feng G, Liu R. MicroRNAs Promote the Progression of Sepsis-Induced Cardiomyopathy and Neurovascular Dysfunction Through Upregulation of NF-kappaB Signaling Pathway-Associated HDAC7/ACTN4. Front Neurol 2022;13:909828. [PMID: 35756932 DOI: 10.3389/fneur.2022.909828] [Reference Citation Analysis]
19 Xu H, Ye W, Shi B. LncRNA MALAT1 Regulates USP22 Expression Through EZH2-Mediated H3K27me3 Modification to Accentuate Sepsis-Induced Myocardial Dysfunction. Cardiovasc Toxicol 2022. [PMID: 35726125 DOI: 10.1007/s12012-022-09758-2] [Reference Citation Analysis]
20 Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2022. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Reference Citation Analysis]
21 Yang F, Li J, Lan Y, Lei Y, Zeng F, Huang X, Luo X, Liu R. Potential application of ginseng in sepsis. Journal of Ginseng Research 2022. [DOI: 10.1016/j.jgr.2022.05.003] [Reference Citation Analysis]
22 Hasselbach L, Weidner J, Elsässer A, Theilmeier G. Heart Failure Relapses in Response to Acute Stresses – Role of Immunological and Inflammatory Pathways. Front Cardiovasc Med 2022;9:809935. [DOI: 10.3389/fcvm.2022.809935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Gergs U, Jahn T, Schulz N, Großmann C, Rueckschloss U, Demus U, Buchwalow IB, Neumann J. Protein Phosphatase 2A Improves Cardiac Functional Response to Ischemia and Sepsis. IJMS 2022;23:4688. [DOI: 10.3390/ijms23094688] [Reference Citation Analysis]
24 Bollen Pinto B, Ferrario M, Herpain A, Brunelli L, Bendjelid K, Carrara M, Pastorelli R. Metabolites Concentration in Plasma and Heart Tissue in Relation to High Sensitive Cardiac Troponin T Level in Septic Shock Pigs. Metabolites 2022;12:319. [DOI: 10.3390/metabo12040319] [Reference Citation Analysis]
25 Liu C, Fan Z, He D, Chen H, Zhang S, Guo S, Zheng B, Cen H, Zhao Y, Liu H, Wang L. Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics 2022;14:758. [DOI: 10.3390/pharmaceutics14040758] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wu J, Wang Z, Xu S, Fu Y, Gao Y, Wu Z, Yu Y, Yuan Y, Zhou L, Li P. Analysis of the role and mechanism of EGCG in septic cardiomyopathy based on network pharmacology. PeerJ 2022;10:e12994. [DOI: 10.7717/peerj.12994] [Reference Citation Analysis]
27 Falk GE, Rogers J, Lu L, Ablah E, Okut H, Vindhyal MR. Sepsis, Septic Shock, and Differences in Cardiovascular Event Occurrence. J Intensive Care Med 2022;:8850666221083644. [PMID: 35236176 DOI: 10.1177/08850666221083644] [Reference Citation Analysis]
28 Li J, Zeng X, Yang F, Wang L, Luo X, Liu R, Zeng F, Lu S, Huang X, Lei Y, Lan Y. Resveratrol: Potential Application in Sepsis. Front Pharmacol 2022;13:821358. [PMID: 35222035 DOI: 10.3389/fphar.2022.821358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Yu M, Xie D, Hu CY, Cui Y. LncRNA small nucleolar RNA host gene 16 reduces sepsis-induced myocardial damage by regulating miR-421/suppressor of cytokine signaling 5 axis. Kaohsiung J Med Sci 2022. [PMID: 35199943 DOI: 10.1002/kjm2.12520] [Reference Citation Analysis]
30 Padilla CR, Shamshirsaz A. Critical Care in Obstetrics. Best Practice & Research Clinical Anaesthesiology 2022. [DOI: 10.1016/j.bpa.2022.02.001] [Reference Citation Analysis]
31 Zhu Z, Zhang G, Li D, Yin X, Wang T. Silencing of specificity protein 1 protects H9c2 cells against lipopolysaccharide-induced injury via binding to the promoter of chemokine CXC receptor 4 and suppressing NF-κB signaling. Bioengineered 2022;13:3395-409. [PMID: 35048778 DOI: 10.1080/21655979.2022.2026548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Villalobos Álvarez VH, Sánchez Calzada A, Arcos Zamora M, Varela Sánchez LE, Aguirre Sánchez JS, Chaires Gutiérrez R. Delta de CO2 como predictor de lesión renal aguda (LRA) en pacientes con diagnóstico de síndrome de distrés respiratorio del adulto (SDRA) por COVID-19 y choque séptico. Medicina Crítica 2022;36:265-271. [DOI: 10.35366/106507] [Reference Citation Analysis]
33 Boissier F, Aissaoui N. Septic cardiomyopathy: Diagnosis and management. Journal of Intensive Medicine 2022;2:8-16. [DOI: 10.1016/j.jointm.2021.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Lu J, Liu F, Yu X, Xu L, Zhang L. The Anti-Inflammatory and Antiapoptotic Effects of Nicorandil in Antisepsis Cardiomyopathy. Cardiovasc Ther 2021;2021:5822920. [PMID: 34950238 DOI: 10.1155/2021/5822920] [Reference Citation Analysis]
35 Sun X, Liu Y, Wang J, Zhang M, Wang M. Cardioprotection of M2 macrophages-derived exosomal microRNA-24-3p/Tnfsf10 axis against myocardial injury after sepsis. Mol Immunol 2021;141:309-17. [PMID: 34933177 DOI: 10.1016/j.molimm.2021.11.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
36 Liu S, Chong W. Roles of LncRNAs in Regulating Mitochondrial Dysfunction in Septic Cardiomyopathy. Front Immunol 2021;12:802085. [PMID: 34899764 DOI: 10.3389/fimmu.2021.802085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Kawaguchi S, Okada M. Cardiac Metabolism in Sepsis. Metabolites 2021;11:846. [PMID: 34940604 DOI: 10.3390/metabo11120846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Chen M, Li J, Wang J, Le Y, Liu C. SMYD1 alleviates septic myocardial injury by inhibiting endoplasmic reticulum stress. Biosci Biotechnol Biochem 2021;85:2383-91. [PMID: 34601561 DOI: 10.1093/bbb/zbab167] [Reference Citation Analysis]
39 Liu C, Yang Y, Liang G, Zhang A, Xu F. MiR-702-3p inhibits the inflammatory injury in septic H9c2 cells by regulating NOD1. Transpl Immunol 2021;70:101493. [PMID: 34774740 DOI: 10.1016/j.trim.2021.101493] [Reference Citation Analysis]
40 Liang YW, Zhu YF, Zhang R, Zhang M, Ye XL, Wei JR. Incidence, prognosis, and risk factors of sepsis-induced cardiomyopathy. World J Clin Cases 2021; 9(31): 9452-9468 [PMID: 34877280 DOI: 10.12998/wjcc.v9.i31.9452] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 Chen P, An Q, Huang Y, Zhang M, Mao S. Prevention of endotoxin-induced cardiomyopathy using sodium tanshinone IIA sulfonate: Involvement of augmented autophagy and NLRP3 inflammasome suppression. Eur J Pharmacol 2021;909:174438. [PMID: 34437885 DOI: 10.1016/j.ejphar.2021.174438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Hiraiwa H, Kasugai D, Ozaki M, Goto Y, Jingushi N, Higashi M, Nishida K, Kondo T, Furusawa K, Morimoto R, Okumura T, Matsuda N, Matsui S, Murohara T. Clinical impact of visually assessed right ventricular dysfunction in patients with septic shock. Sci Rep 2021;11:18823. [PMID: 34552188 DOI: 10.1038/s41598-021-98397-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Matsunaga N, Yoshioka Y, Fukuta Y. Extremely high troponin levels induced by septic shock: a case report. J Med Case Rep 2021;15:466. [PMID: 34507615 DOI: 10.1186/s13256-021-03027-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Sosnin DY, Gal’kovich KR. Determination of procalcitonin content in blood serum, urine, and ejaculate for the diagnosis of urogenital tract pathology. Sibirskij nauchnyj medicinskij zhurnal 2021;41:15-24. [DOI: 10.18699/ssmj20210402] [Reference Citation Analysis]
45 Pei Y, Xie S, Li J, Jia B. Bone marrow-mesenchymal stem cell-derived exosomal microRNA-141 targets PTEN and activates β-catenin to alleviate myocardial injury in septic mice. Immunopharmacol Immunotoxicol 2021;:1-10. [PMID: 34308733 DOI: 10.1080/08923973.2021.1955920] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Wasyluk W, Nowicka-Stążka P, Zwolak A. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart. Int J Environ Res Public Health 2021;18:7598. [PMID: 34300048 DOI: 10.3390/ijerph18147598] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Beltrán-García J, Osca-Verdegal R, Nácher-Sendra E, Cardona-Monzonís A, Sanchis-Gomar F, Carbonell N, Pallardó FV, Lavie CJ, García-Giménez JL. Role of non-coding RNAs as biomarkers of deleterious cardiovascular effects in sepsis. Prog Cardiovasc Dis 2021:S0033-0620(21)00073-6. [PMID: 34265333 DOI: 10.1016/j.pcad.2021.07.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
48 Bertini P, Guarracino F. Pathophysiology of cardiogenic shock. Curr Opin Crit Care 2021;27:409-15. [PMID: 34039874 DOI: 10.1097/MCC.0000000000000853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
49 Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen Sulfide Attenuated Sepsis-Induced Myocardial Dysfunction Through TLR4 Pathway and Endoplasmic Reticulum Stress. Front Physiol 2021;12:653601. [PMID: 34177611 DOI: 10.3389/fphys.2021.653601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
50 Yang YP, Zhao JQ, Gao HB, Li JJ, Li XL, Niu XL, Lei YH, Li X. Tannic acid alleviates lipopolysaccharide‑induced H9C2 cell apoptosis by suppressing reactive oxygen species‑mediated endoplasmic reticulum stress. Mol Med Rep 2021;24:535. [PMID: 34080663 DOI: 10.3892/mmr.2021.12174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Yang Y, Leng J, Tian X, Wang H, Hao C. Brain natriuretic peptide and cardiac troponin I for prediction of the prognosis in cancer patients with sepsis. BMC Anesthesiol 2021;21:159. [PMID: 34030651 DOI: 10.1186/s12871-021-01384-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021;905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
53 Rattis BAC, Freitas AC, Oliveira JF, Calandrini-Lima JLA, Figueiredo MJ, Soave DF, Ramos SG, Celes MRN. Effect of Verapamil, an L-Type Calcium Channel Inhibitor, on Caveolin-3 Expression in Septic Mouse Hearts. Oxid Med Cell Longev 2021;2021:6667074. [PMID: 33927797 DOI: 10.1155/2021/6667074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Wang Y, Zhai X, Zhu M, Pan Y, Yang M, Yu K, He B. Risk factors for postoperative sepsis-induced cardiomyopathy in patients undergoing general thoracic surgery: a single center experience. J Thorac Dis 2021;13:2486-94. [PMID: 34012595 DOI: 10.21037/jtd-21-492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Laudanski K. Humanized Mice as a Tool to Study Sepsis-More Than Meets the Eye. Int J Mol Sci 2021;22:2403. [PMID: 33673691 DOI: 10.3390/ijms22052403] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
56 Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care 2020;35:57-66. [PMID: 32506871 DOI: 10.4266/acc.2020.00248] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
57 Tyurin I, Rautbart S, Ganieva I, Aleksandrovsky A, Kozlov I. Critical care echocardiography and transpulmonary thermodilution in patients with sepsis. Pilot study. Annals of critical care 2020. [DOI: 10.21320/1818-474x-2020-4-108-119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]