BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barbosa E, Dos Santos ALA, Peteffi GP, Schneider A, Müller D, Rovaris D, Bau CHD, Linden R, Antunes MV, Charão MF. Increase of global DNA methylation patterns in beauty salon workers exposed to low levels of formaldehyde. Environ Sci Pollut Res Int 2019;26:1304-14. [PMID: 30421373 DOI: 10.1007/s11356-018-3674-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Arfaeinia H, Dobaradaran S, Mahmoodi M, Farjadfard S, Tahmasbizadeh M, Fazlzadeh M. Urinary profile of PAHs and related compounds in women working in beauty salons. Science of The Total Environment 2022;851:158281. [DOI: 10.1016/j.scitotenv.2022.158281] [Reference Citation Analysis]
2 Adair LD, Tan NK, New EJ. Activity‐based Fluorescent Sensors and Their Applications in Biological Studies. Molecular Fluorescent Sensors for Cellular Studies 2022. [DOI: 10.1002/9781119749844.ch5] [Reference Citation Analysis]
3 Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022;:1-19. [PMID: 36017556 DOI: 10.1080/15592294.2022.2115604] [Reference Citation Analysis]
4 Arbo MD, Garcia SC, Sarpa M, Da Silva Junior FM, Nascimento SN, Garcia ALH, Da Silva J. Brazilian workers occupationally exposed to different toxic agents: A systematic review on DNA damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2022;879-880:503519. [DOI: 10.1016/j.mrgentox.2022.503519] [Reference Citation Analysis]
5 Kezic S, Nunez R, Babić Ž, Hallmann S, Havmose MS, Johansen JD, John SM, Macan M, Symanzik C, Uter W, Weinert P, Turk R, Macan J, van der Molen HF. Occupational Exposure of Hairdressers to Airborne Hazardous Chemicals: A Scoping Review. Int J Environ Res Public Health 2022;19:4176. [PMID: 35409860 DOI: 10.3390/ijerph19074176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Goodrich JM, Jung AM, Furlong MA, Beitel S, Littau S, Gulotta J, Wallentine D, Burgess JL. Repeat measures of DNA methylation in an inception cohort of firefighters. Occup Environ Med 2022:oemed-2021-108153. [PMID: 35332072 DOI: 10.1136/oemed-2021-108153] [Reference Citation Analysis]
7 Li X, Li Z, Shen H, Zhao H, Qin G, Xue J. Effects of long-term and low-concentration exposures of benzene and formaldehyde on mortality of Drosophila melanogaster. Environ Pollut 2022;300:118924. [PMID: 35104555 DOI: 10.1016/j.envpol.2022.118924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. Mutat Res Rev Mutat Res 2022;789:108408. [PMID: 35690411 DOI: 10.1016/j.mrrev.2021.108408] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Cammalleri V, Pocino RN, Marotta D, Protano C, Sinibaldi F, Simonazzi S, Petyx M, Iavicoli S, Vitali M. Occupational scenarios and exposure assessment to formaldehyde: A systematic review. Indoor Air 2021. [PMID: 34708443 DOI: 10.1111/ina.12949] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Arfaeinia L, Tabatabaie T, Miri M, Arfaeinia H. Bioaccessibility-based monitoring and risk assessment of indoor dust-bound PAHs collected from housing and public buildings: Effect of influencing factors. Environ Res 2021;204:112039. [PMID: 34509479 DOI: 10.1016/j.envres.2021.112039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
11 Yan R, Chen XL, Xu YM, Lau ATY. Epimutational effects of electronic cigarettes. Environ Sci Pollut Res Int 2021;28:17044-67. [PMID: 33655478 DOI: 10.1007/s11356-021-12985-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bernardini L, Barbosa E, Charão MF, Goethel G, Muller D, Bau C, Steffens NA, Santos Stein C, Moresco RN, Garcia SC, Souza Vencato M, Brucker N. Oxidative damage, inflammation, genotoxic effect, and global DNA methylation caused by inhalation of formaldehyde and the purpose of melatonin. Toxicol Res (Camb) 2020;9:778-89. [PMID: 33447362 DOI: 10.1093/toxres/tfaa079] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020;10:16545. [PMID: 33024153 DOI: 10.1038/s41598-020-73376-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
14 Ramos PM, Anzai A, Duque-Estrada B, Farias DC, Melo DF, Mulinari-Brenner F, Pinto GM, Abraham LS, Santos LDN, Pirmez R, Miot HA. Risk factors for frontal fibrosing alopecia: A case-control study in a multiracial population. J Am Acad Dermatol 2021;84:712-8. [PMID: 32835739 DOI: 10.1016/j.jaad.2020.08.076] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
15 Bernardini L, Barbosa E, Charão MF, Brucker N. Formaldehyde toxicity reports from in vitro and in vivo studies: a review and updated data. Drug Chem Toxicol 2020;:1-13. [PMID: 32686516 DOI: 10.1080/01480545.2020.1795190] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
16 Leso V, Macrini MC, Russo F, Iavicoli I. Formaldehyde Exposure and Epigenetic Effects: A Systematic Review. Applied Sciences 2020;10:2319. [DOI: 10.3390/app10072319] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
17 Venkatratnam A, Fry RC. The role of nutrition and epigenetics in environmental toxicology. Environmental Epigenetics in Toxicology and Public Health 2020. [DOI: 10.1016/b978-0-12-819968-8.00013-5] [Reference Citation Analysis]
18 Ferrari L, Pavanello S, Bollati V. Molecular and epigenetic markers as promising tools to quantify the effect of occupational exposures and the risk of developing non-communicable diseases. Med Lav 2019;110:168-90. [PMID: 31268425 DOI: 10.23749/mdl.v110i3.8538] [Cited by in F6Publishing: 2] [Reference Citation Analysis]