BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gordan R, Wongjaikam S, Gwathmey JK, Chattipakorn N, Chattipakorn SC, Xie LH. Involvement of cytosolic and mitochondrial iron in iron overload cardiomyopathy: an update. Heart Fail Rev 2018;23:801-16. [PMID: 29675595 DOI: 10.1007/s10741-018-9700-5] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Amanor E, Kwarteng A, Larbi A, Fordjour FA, Koranteng KK, Sackey DS, Bannor E, Osei FA, Mohammed A, Ackah EB, Odoom SF, Nguah SB, Paintsil V, Osei‐akoto A. Iron stores in steady‐state sickle cell disease children accessing care at a sickle cell disease clinic in Kumasi, Ghana: A cross‐sectional study. Health Science Reports 2022;5. [DOI: 10.1002/hsr2.934] [Reference Citation Analysis]
2 Xie L, Fefelova N, Pamarthi SH, Gwathmey JK. Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells 2022;11:2726. [DOI: 10.3390/cells11172726] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Dos Santos L, Rodrigues SB, Ávila RA, Marques VB. Iron overload, oxidative stress and vascular dysfunction: Evidences from clinical studies and animal models. Biochim Biophys Acta Gen Subj 2022;:130172. [PMID: 35597504 DOI: 10.1016/j.bbagen.2022.130172] [Reference Citation Analysis]
4 Charoenphandhu N, Sooksawanwit S, Aeimlapa R, Thonapan N, Upanan P, Adulyaritthikul P, Krungchanuchat S, Panupinthu N, Teerapornpuntakit J, Rojviriya C, Lertsuwan K, Svasti S, Wongdee K. Mild-intensity physical activity prevents cardiac and osseous iron deposition without affecting bone mechanical property or porosity in thalassemic mice. Sci Rep 2022;12:5959. [PMID: 35396390 DOI: 10.1038/s41598-022-09997-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wu T, Wang X, Cheng J, Liang X, Li Y, Chen M, Kong L, Tang M. Nitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia. Part Fibre Toxicol 2022;19:22. [PMID: 35331277 DOI: 10.1186/s12989-022-00464-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Guo N, Chen Y, Zhang Y, Deng Y, Zeng F, Li X. Potential Role of APEX1 During Ferroptosis. Front Oncol 2022;12:798304. [PMID: 35311089 DOI: 10.3389/fonc.2022.798304] [Reference Citation Analysis]
7 Wu BB, Leung KT, Poon EN. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2022;23:1912. [PMID: 35163838 DOI: 10.3390/ijms23031912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Guo Y, Zhao H, Lin Z, Ye T, Xu D, Zeng Q. Heme in Cardiovascular Diseases: A Ubiquitous Dangerous Molecule Worthy of Vigilance. Front Cell Dev Biol 2022;9:781839. [DOI: 10.3389/fcell.2021.781839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Li J, Liu S, Yao R, Tian Y, Yao Y. A Novel Insight Into the Fate of Cardiomyocytes in Ischemia-Reperfusion Injury: From Iron Metabolism to Ferroptosis. Front Cell Dev Biol 2021;9:799499. [DOI: 10.3389/fcell.2021.799499] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
10 Gautam G, Parveen B, Umar Khan M, Sharma I, Kumar Sharma A, Parveen R, Ahmad S. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease. Saudi J Biol Sci 2021;28:6441-53. [PMID: 34764761 DOI: 10.1016/j.sjbs.2021.07.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022;69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Reference Citation Analysis]
12 Wu A, Feng B, Yu J, Yan L, Che L, Zhuo Y, Luo Y, Yu B, Wu, Chen D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol 2021;46:102131. [PMID: 34530349 DOI: 10.1016/j.redox.2021.102131] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
13 Arif HM, Qian ZM, Wang R. Signaling integration of hydrogen sulfide and iron on cellular functions. Antioxid Redox Signal 2021. [PMID: 34498949 DOI: 10.1089/ars.2021.0203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Shikalova IA, Voznyuk IA, Lodyagin AN, Batotsyrenov BV, Timofeyeva NV, Pivovarova LP, Osipova IV, Polyakov IA, Ariskina OB, Borisenko AN, Rysev GA. Disorder of Iron Metabolism as a Universal Pathogenetic Factor in Damage to Organs and Systems in Covid-19. Neotložnaâ med pomoŝʹ 2021;10:259-267. [DOI: 10.23934/2223-9022-2021-10-2-259-267] [Reference Citation Analysis]
15 Daniłowicz-Szymanowicz L, Świątczak M, Sikorska K, Starzyński RR, Raczak A, Lipiński P. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics (Basel) 2021;11:1279. [PMID: 34359361 DOI: 10.3390/diagnostics11071279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021;141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
17 Halcrow PW, Lynch ML, Geiger JD, Ohm JE. Role of endolysosome function in iron metabolism and brain carcinogenesis. Semin Cancer Biol 2021:S1044-579X(21)00183-8. [PMID: 34139350 DOI: 10.1016/j.semcancer.2021.06.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
18 Otasevic V, Vucetic M, Grigorov I, Martinovic V, Stancic A. Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria. Oxid Med Cell Longev 2021;2021:5537330. [PMID: 34211625 DOI: 10.1155/2021/5537330] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
19 Rhee JW, Yi H, Thomas D, Lam CK, Belbachir N, Tian L, Qin X, Malisa J, Lau E, Paik DT, Kim Y, Choi BS, Sayed N, Sallam K, Liao R, Wu JC. Modeling Secondary Iron Overload Cardiomyopathy with Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Rep 2020;32:107886. [PMID: 32668256 DOI: 10.1016/j.celrep.2020.107886] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
20 Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021;10:667. [PMID: 33922912 DOI: 10.3390/antiox10050667] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 36.0] [Reference Citation Analysis]
21 Kobak KA, Franczuk P, Schubert J, Dzięgała M, Kasztura M, Tkaczyszyn M, Drozd M, Kosiorek A, Kiczak L, Bania J, Ponikowski P, Jankowska EA. Primary Human Cardiomyocytes and Cardiofibroblasts Treated with Sera from Myocarditis Patients Exhibit an Increased Iron Demand and Complex Changes in the Gene Expression. Cells 2021;10:818. [PMID: 33917391 DOI: 10.3390/cells10040818] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Siri-Angkul N, Song Z, Fefelova N, Gwathmey JK, Chattipakorn SC, Qu Z, Chattipakorn N, Xie LH. Activation of TRPC (Transient Receptor Potential Canonical) Channel Currents in Iron Overloaded Cardiac Myocytes. Circ Arrhythm Electrophysiol 2021;14:e009291. [PMID: 33417472 DOI: 10.1161/CIRCEP.120.009291] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
23 Xu G, Li X, Zhu Z, Wang H, Bai X. Iron Overload Induces Apoptosis and Cytoprotective Autophagy Regulated by ROS Generation in Mc3t3-E1 Cells. Biol Trace Elem Res 2021;199:3781-92. [PMID: 33405076 DOI: 10.1007/s12011-020-02508-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
24 Singh LP, Yumnamcha T, Devi TS. Mitophagy, Ferritinophagy and Ferroptosis in Retinal Pigment Epithelial Cells Under High Glucose Conditions: Implications for Diabetic Retinopathy and Age-Related Retinal Diseases. JOJ Ophthalmol 2021;8:77-85. [PMID: 35187384] [Reference Citation Analysis]
25 Yoon N, Kim S, Sung HK, Dang TQ, Jeon JS, Sweeney G. Use of 2-dimensional cell monolayers and 3-dimensional microvascular networks on microfluidic devices shows that iron increases transendothelial adiponectin flux via inducing ROS production. Biochim Biophys Acta Gen Subj 2021;1865:129796. [PMID: 33212230 DOI: 10.1016/j.bbagen.2020.129796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Sun L, Lin X, Pornprasert S, Lü X, Ran B, Lin Y. L-type calcium channel blockers decrease the iron overload-mediated oxidative stress in renal epithelial cells by reducing iron accumulation. Eur J Pharmacol 2020;886:173513. [PMID: 32898550 DOI: 10.1016/j.ejphar.2020.173513] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Ravingerová T, Kindernay L, Barteková M, Ferko M, Adameová A, Zohdi V, Bernátová I, Ferenczyová K, Lazou A. The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020;21:E7889. [PMID: 33114290 DOI: 10.3390/ijms21217889] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 17.5] [Reference Citation Analysis]
28 Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron Overload, Oxidative Stress and Calcium Mishandling in Cardiomyocytes: Role of the Mitochondrial Permeability Transition Pore. Antioxidants (Basel) 2020;9:E758. [PMID: 32824344 DOI: 10.3390/antiox9080758] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
29 Zheng H, You J, Yao X, Lu Q, Guo W, Shen Y. Superparamagnetic iron oxide nanoparticles promote ferroptosis of ischemic cardiomyocytes. J Cell Mol Med 2020;24:11030-3. [PMID: 32780538 DOI: 10.1111/jcmm.15722] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
30 Kaur H, Aurif F, Kittaneh M, Chio JPG, Malik BH. Cardiomyopathy in Sickle Cell Disease. Cureus 2020;12:e9619. [PMID: 32923220 DOI: 10.7759/cureus.9619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Smith MJ, Fowler M, Naftalin RJ, Siow RC. UVA irradiation increases ferrous iron release from human skin fibroblast and endothelial cell ferritin: Consequences for cell senescence and aging. Free Radical Biology and Medicine 2020;155:49-57. [DOI: 10.1016/j.freeradbiomed.2020.04.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
32 Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2021;117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Vela D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol (Oxf) 2020;228:e13324. [PMID: 31162883 DOI: 10.1111/apha.13324] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
34 Shen Y, Gong S, Li J, Wang Y, Zhang X, Zheng H, Zhang Q, You J, Huang Z, Chen Y. Co-loading antioxidant N-acetylcysteine attenuates cytotoxicity of iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Int J Nanomedicine 2019;14:6103-15. [PMID: 31447555 DOI: 10.2147/IJN.S209820] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
35 Shizukuda Y, Rosing DR. Iron overload and arrhythmias: Influence of confounding factors. J Arrhythm 2019;35:575-83. [PMID: 31410226 DOI: 10.1002/joa3.12208] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
36 Paterek A, Mackiewicz U, Mączewski M. Iron and the heart: A paradigm shift from systemic to cardiomyocyte abnormalities. J Cell Physiol 2019;234:21613-29. [DOI: 10.1002/jcp.28820] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
37 Siri-Angkul N, Xie LH, Chattipakorn SC, Chattipakorn N. Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes. Front Physiol 2018;9:1615. [PMID: 30498456 DOI: 10.3389/fphys.2018.01615] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
38 Koppenol WH, Hider RH. Iron and redox cycling. Do's and don'ts. Free Radic Biol Med 2019;133:3-10. [PMID: 30236787 DOI: 10.1016/j.freeradbiomed.2018.09.022] [Cited by in Crossref: 91] [Cited by in F6Publishing: 97] [Article Influence: 22.8] [Reference Citation Analysis]