1 |
Zhu T, Tang Q, Zeng Y, Chen S, Yang Y, Wang H, Chen J, Guo L, Li L. Sensitive determination of prostate-specific antigen with graphene quantum dot-based fluorescence aptasensor using few-layer V(2)CT(x) MXene as quencher. Spectrochim Acta A Mol Biomol Spectrosc 2023;293:122474. [PMID: 36812754 DOI: 10.1016/j.saa.2023.122474] [Reference Citation Analysis]
|
2 |
Chen S, Tang Q, Zeng Y, Yang Y, Zhu T, Wang H, Guo L, Li L, Qian Z. A novel fluorescence aptasensor based on PCN-223 as an efficient quencher for sensitive determination of prostate-specific antigen. Mikrochim Acta 2023;190:70. [PMID: 36694049 DOI: 10.1007/s00604-023-05650-0] [Reference Citation Analysis]
|
3 |
Wen X, Song Z, Cui J, Li Y, Tang Q, Liao X. Construction of Fluorescence Sensing Platform on the Basis of Molybdenum Disulfide Nanosheet for the Detection of AFB<sub>1</sub>. JBM 2023;11:1-14. [DOI: 10.4236/jbm.2023.112001] [Reference Citation Analysis]
|
4 |
Liu F, Huang W, Geng L, Zhao S, Ye F. Highly sensitive photoelectrochemical detection of cancer biomarkers based on CdS/Ni-CAT-1 nanorod arrays Z-scheme heterojunction with spherical nucleic acids-templated copper nanoclusters as signal amplification. Sensors and Actuators B: Chemical 2023;374:132786. [DOI: 10.1016/j.snb.2022.132786] [Reference Citation Analysis]
|
5 |
Shankar Tade R, Onkar Patil P. Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchemical Journal 2022;183:107971. [DOI: 10.1016/j.microc.2022.107971] [Reference Citation Analysis]
|
6 |
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2022:S2090-1232(22)00250-8. [PMID: 36368516 DOI: 10.1016/j.jare.2022.11.001] [Reference Citation Analysis]
|
7 |
Wang X, Liao X, Zhang B, Chen S, Zhang M, Mei L, Zhang L, Qiao X, Hong C. Fabrication of a novel electrochemical immunosensor for the sensitive detection of carcinoembryonic antigen using a double signal attenuation strategy. Analytica Chimica Acta 2022;1232:340455. [DOI: 10.1016/j.aca.2022.340455] [Reference Citation Analysis]
|
8 |
Fu Y, Han H, Xu Y, Cui H, Yao X, Guan G, Han MY. BSA-assisted hydrothermal conversion of MoS2 nanosheets into quantum dots with high yield and bright fluorescence for constructing a sensing platform via dual quenching effects. Spectrochim Acta A Mol Biomol Spectrosc 2022;282:121701. [PMID: 35933779 DOI: 10.1016/j.saa.2022.121701] [Reference Citation Analysis]
|
9 |
Wang K, Xing X, Ding Y, Wen X, Lu Y, Wang G, Wang J, Zhao H, Hong X. A dual-mode immunosensing strategy for prostate specific antigen detection: Integration of resonance Raman scattering and photoluminescence properties of ZnS:Mn2+ nanoprobes. Analytica Chimica Acta 2022;1205:339775. [DOI: 10.1016/j.aca.2022.339775] [Reference Citation Analysis]
|
10 |
Luan T, Yang H, Niu M, Zhao Y, Chen S, Lv L, Li X, Guo Z. A Label-free Fluorescent Aptasensor Based on Exonuclease I for the Determination of Ochratoxin A. Chinese Journal of Analytical Chemistry 2022. [DOI: 10.1016/j.cjac.2022.100126] [Reference Citation Analysis]
|
11 |
Yao J, Shao J, Liu H, Wu Z, Zheng W, Miao H, Zhao Y. Dual electroactive AgM (M=Ru, Pt) NPs for double electroanalysis of HER2 and EpCAM. Sensors and Actuators B: Chemical 2022;357:131436. [DOI: 10.1016/j.snb.2022.131436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Pan Z, Yang D, Lin J, Shao K, Shi S, Teng Y, Liu H, She Y. Autofluorescence free detection of carcinoembryonic antigen in pleural effusion by persistent luminescence nanoparticle-based aptasensors. Analytica Chimica Acta 2022;1194:339408. [DOI: 10.1016/j.aca.2021.339408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Wu W, Wu Q, Ren S, Liu Z, Chen F. Ti3C2-MXene-assisted signal amplification for sensitive and selective surface plasmon resonance biosensing of biomarker. Chinese Journal of Analytical Chemistry 2022;50:13-8. [DOI: 10.1016/j.cjac.2021.11.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Li Y, Dai X, He L, Bu Y, Ao JP. Crystal-reconstructed BiVO4 semiconductor photoelectrochemical sensor for ultra-sensitive tumor biomarker detection. J Mater Chem B 2022. [PMID: 35050300 DOI: 10.1039/d1tb02576g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Feng X, Zhu Y, Wang F, Guo T, Dou X, Lin M, Tian W, Singh V. The Aptamer Functionalized Nanocomposite Used for Prostate Cancer Diagnosis and Therapy. Journal of Nanomaterials 2022;2022:1-17. [DOI: 10.1155/2022/9946357] [Reference Citation Analysis]
|
16 |
Wang L, Wang Y, Hu M, Xi S, Cheng M, Dong Y. Graphene Oxide-triplex Structure Based DNA Nanoswitches as a Programmable Tetracycline-Responsive Fluorescent Biosensor. Communications in Computer and Information Science 2022. [DOI: 10.1007/978-981-19-1256-6_28] [Reference Citation Analysis]
|
17 |
Tade RS, Patil PO. Fabrication of Poly-l-lysine-Functionalized Graphene Quantum Dots for the Label-Free Fluorescent-Based Detection of Carcinoembryonic Antigen. ACS Biomater Sci Eng 2021. [PMID: 34967597 DOI: 10.1021/acsbiomaterials.1c01087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
18 |
Pothipor C, Bamrungsap S, Jakmunee J, Ounnunkad K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf B Biointerfaces 2021;210:112260. [PMID: 34894598 DOI: 10.1016/j.colsurfb.2021.112260] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
19 |
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Wang X, Liao X, Zhang B, Zhang M, Mei L, Wang F, Chen S, Qiao X, Hong C. An electrochemical immunosensor for the detection of carcinoembryonic antigen based on Au/g-C3N4 NSs-modified electrode and CuCo/CNC as signal tag. Mikrochim Acta 2021;188:408. [PMID: 34738160 DOI: 10.1007/s00604-021-05013-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
21 |
Zhao Y, Yao J, Wu Z, Liu H, Zheng W. AuPt NPs with enhanced electrochemical oxidization activity for ratiometric electrochemical aptasensor. Biosens Bioelectron 2021;196:113733. [PMID: 34736102 DOI: 10.1016/j.bios.2021.113733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
22 |
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021;21:703-21. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
|
23 |
Wang X, Liao X, Zhang B, Zhang L, Zhang M, Mei L, Chen S, Sun C, Qiao X, Hong C. The electrochemical immunosensor of the "signal on" strategy that activates MMoO4 (M = Co, Ni) peroxidase with Cu2+ to achieve ultrasensitive detection of CEA. Anal Chim Acta 2021;1176:338757. [PMID: 34399891 DOI: 10.1016/j.aca.2021.338757] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
24 |
Han R, Sun Y, Dai Y, Gao D, Wang X, Luo C. A chemiluminescence aptasensor for sensitive detection of carcinoembryonic antigen based on dual aptamer-conjugates biorecognition. Sensors and Actuators B: Chemical 2021;326:128833. [DOI: 10.1016/j.snb.2020.128833] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
|
25 |
Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020;5:3721-38. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Cited by in Crossref: 37] [Cited by in F6Publishing: 43] [Article Influence: 12.3] [Reference Citation Analysis]
|
26 |
Farshchi F, Hasanzadeh M. Nanomaterial based aptasensing of prostate specific antigen (PSA): Recent progress and challenges in efficient diagnosis of prostate cancer using biomedicine. Biomedicine & Pharmacotherapy 2020;132:110878. [DOI: 10.1016/j.biopha.2020.110878] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
27 |
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim Acta A Mol Biomol Spectrosc 2021;247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
|
28 |
Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C. Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 2020;187:538. [PMID: 32876849 DOI: 10.1007/s00604-020-04498-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
29 |
Wang K, Ni R, Xing X, Wen X, Liu J, Ding Y, Hong X. Upconversion luminescence–infrared absorption nanoprobes for the detection of prostate-specific antigen. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04504-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Abnous K. A DNA triangular prism-based fluorescent aptasensor for ultrasensitive detection of prostate-specific antigen. Analytica Chimica Acta 2020;1120:36-42. [DOI: 10.1016/j.aca.2020.04.071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Li X, Kong W, Qin X, Qu F, Lu L. Self-powered cathodic photoelectrochemical aptasensor based on in situ-synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Mikrochim Acta 2020;187:325. [PMID: 32399626 DOI: 10.1007/s00604-020-04277-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
32 |
Kholafazad Kordasht H, Pazhuhi M, Pashazadeh-panahi P, Hasanzadeh M, Shadjou N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. TrAC Trends in Analytical Chemistry 2020;124:115778. [DOI: 10.1016/j.trac.2019.115778] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
33 |
Ding L, Chen X, He L, Yu F, Yu S, Wang J, Tian Y, Wang Y, Wu Y, Liu L, Qu L. Fluorometric immunoassay for the simultaneous determination of the tumor markers carcinoembryonic antigen and cytokeratin 19 fragment using two kinds of CdSe/ZnS quantum dot nanobeads and magnetic beads. Microchim Acta 2020;187. [DOI: 10.1007/s00604-019-3914-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
|
34 |
Xiang W, Lv Q, Shi H, Xie B, Gao L. Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta 2020;214:120716. [PMID: 32278406 DOI: 10.1016/j.talanta.2020.120716] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 16.7] [Reference Citation Analysis]
|
35 |
Chen M, Tang Z, Ma C, Yan Y. A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sensors and Actuators B: Chemical 2020;302:127178. [DOI: 10.1016/j.snb.2019.127178] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
|
36 |
Shi L, Shao J, Jing X, Zheng W, Liu H, Zhao Y. Autoluminescence-Free Dual Tumor Marker Biosensing by Persistent Luminescence Nanostructures. ACS Sustainable Chem Eng 2020;8:686-94. [DOI: 10.1021/acssuschemeng.9b06621] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
37 |
Feng J, Li X, Cheng H, Huang W, Kong H, Li Y, Li L. A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen. Mikrochim Acta 2019;186:774. [PMID: 31728646 DOI: 10.1007/s00604-019-3972-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
|
38 |
Zhao Y, Zheng F, Shi L, Liu H, Ke W. Autoluminescence-Free Prostate-Specific Antigen Detection by Persistent Luminous Nanorods and Au@Ag@SiO 2 Nanoparticles. ACS Appl Mater Interfaces 2019;11:40669-76. [DOI: 10.1021/acsami.9b14901] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
39 |
Zhang B, Jia Y, Wang J, Hu X, Zhao Z, Cheng Y. Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3706-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Ghorbani F, Abbaszadeh H, Dolatabadi JEN, Aghebati-Maleki L, Yousefi M. Application of various optical and electrochemical aptasensors for detection of human prostate specific antigen: A review. Biosens Bioelectron 2019;142:111484. [PMID: 31284103 DOI: 10.1016/j.bios.2019.111484] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 15.5] [Reference Citation Analysis]
|
41 |
Fa Y, Guan M, Zhao H, Li F, Liu H. Affinity analysis between trypsin and aptamers using surface plasmon resonance competition experiments in a steady state. Anal Methods 2019;11:3061-5. [DOI: 10.1039/c9ay00861f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|