BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang H, Ke H, Wang Y, Li P, Huang C, Jia N. 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Mikrochim Acta 2018;186:39. [PMID: 30569315 DOI: 10.1007/s00604-018-3160-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Karadkar S, Tiwari A, Chaskar AC. Recent advancements in Janus nanoparticle-based biosensing platforms. Int Nano Lett 2022. [DOI: 10.1007/s40089-022-00385-x] [Reference Citation Analysis]
2 Wang Y, Quan J, Zhang J, Huang K, Wang X, Jiang H. DNA walker induced “signal off” electrochemical cytosensor strategy for ultrasensitive detection of tumor cells. Sensors and Actuators B: Chemical 2022;366:132021. [DOI: 10.1016/j.snb.2022.132021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sun ZF, Chang Y, Xia N. Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. Biosensors (Basel) 2021;11:281. [PMID: 34436082 DOI: 10.3390/bios11080281] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
4 Toropova AP, Toropov AA, Leszczynska D, Leszczynski J. Application of quasi-SMILES to the model of gold-nanoparticles uptake in A549 cells. Comput Biol Med 2021;136:104720. [PMID: 34364261 DOI: 10.1016/j.compbiomed.2021.104720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhou H, Du X, Zhang Z. Electrochemical Sensors for Detection of Markers on Tumor Cells. Int J Mol Sci 2021;22:8184. [PMID: 34360949 DOI: 10.3390/ijms22158184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 Niloy MS, Shakil MS, Hossen MS, Alam M, Rosengren RJ. Promise of gold nanomaterials as a lung cancer theranostic agent: a systematic review. Int Nano Lett 2021;11:93-111. [DOI: 10.1007/s40089-021-00332-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
7 Liu XY, Wang JQ, Ashby CR Jr, Zeng L, Fan YF, Chen ZS. Gold nanoparticles: synthesis, physiochemical properties and therapeutic applications in cancer. Drug Discov Today 2021;26:1284-92. [PMID: 33549529 DOI: 10.1016/j.drudis.2021.01.030] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 27.0] [Reference Citation Analysis]
8 Tang X, Wang Z, Wei F, Mu W, Han X. Recent Progress of Lung Cancer Diagnosis Using Nanomaterials. Crystals 2021;11:24. [DOI: 10.3390/cryst11010024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Cheng L, Zhu G, Liu G, Zhu L. FDTD simulation of the optical properties for gold nanoparticles. Mater Res Express 2020;7:125009. [DOI: 10.1088/2053-1591/abd139] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
10 Bolat G, Vural OA, Yaman YT, Abaci S. Polydopamine nanoparticles-assisted impedimetric sensor towards label-free lung cancer cell detection. Mater Sci Eng C Mater Biol Appl 2021;119:111549. [PMID: 33321613 DOI: 10.1016/j.msec.2020.111549] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
11 Zhang H, Liang F, Wu X, Liu Y, Chen A. Recognition and sensitive detection of CTCs using a controllable label-free electrochemical cytosensor. Mikrochim Acta 2020;187:487. [PMID: 32761498 DOI: 10.1007/s00604-020-04452-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Zhang Y, Luo S, Situ B, Ye X, Huang Y, Li B, Jiang X, Chen X, Zheng L, Yan X. A fluorescent immunosensor for determination and imaging of circulating tumor cells based on a bifunctional DNA nanomachine. Mikrochim Acta 2020;187:259. [PMID: 32248380 DOI: 10.1007/s00604-020-4205-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Li Y, Hu M, Huang X, Wang M, He L, Song Y, Jia Q, Zhou N, Zhang Z, Du M. Multicomponent zirconium-based metal-organic frameworks for impedimetric aptasensing of living cancer cells. Sensors and Actuators B: Chemical 2020;306:127608. [DOI: 10.1016/j.snb.2019.127608] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 15.0] [Reference Citation Analysis]
14 Ören Varol T. Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers and Drugs. Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models 2020. [DOI: 10.1007/978-981-15-7586-0_2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Xu J, Hu Y, Wang S, Ma X, Guo J. Nanomaterials in electrochemical cytosensors. Analyst 2020;145:2058-69. [DOI: 10.1039/c9an01895f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
16 Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019;186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 22.7] [Reference Citation Analysis]