BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li S, Lin Y, Zhu T, Fan M, Xu S, Qiu W, Chen C, Li L, Wang Y, Yan J, Wong J, Naing L, Xu S. Development and external evaluation of predictions models for mortality of COVID-19 patients using machine learning method. Neural Comput Appl 2021;:1-10. [PMID: 33424133 DOI: 10.1007/s00521-020-05592-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Moslehi S, Rabiei N, Soltanian AR, Mamani M. Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran. BMC Med Inform Decis Mak 2022;22. [DOI: 10.1186/s12911-022-01939-x] [Reference Citation Analysis]
2 Mustafa A. Mohammad R, Aljabri M, Aboulnour M, Mirza S, Alshobaiki A, Ramachandran M. Classifying the Mortality of People with Underlying Health Conditions Affected by COVID-19 Using Machine Learning Techniques. Applied Computational Intelligence and Soft Computing 2022;2022:1-12. [DOI: 10.1155/2022/3783058] [Reference Citation Analysis]
3 Mazloumi R, Abazari SR, Nafarieh F, Aghsami A, Jolai F. Statistical analysis of blood characteristics of COVID-19 patients and their survival or death prediction using machine learning algorithms. Neural Comput & Applic. [DOI: 10.1007/s00521-022-07325-y] [Reference Citation Analysis]
4 Aggarwal AN, Agarwal R, Dhooria S, Prasad KT, Sehgal IS, Muthu V. Active pulmonary tuberculosis and coronavirus disease 2019: A systematic review and meta-analysis. PLoS One 2021;16:e0259006. [PMID: 34673822 DOI: 10.1371/journal.pone.0259006] [Reference Citation Analysis]
5 Abbasimehr H, Paki R, Bahrini A. A novel approach based on combining deep learning models with statistical methods for COVID-19 time series forecasting. Neural Comput Appl 2021;:1-15. [PMID: 34658536 DOI: 10.1007/s00521-021-06548-9] [Reference Citation Analysis]
6 Krysko O, Kondakova E, Vershinina O, Galova E, Blagonravova A, Gorshkova E, Bachert C, Ivanchenko M, Krysko DV, Vedunova M. Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study. Front Immunol 2021;12:715072. [PMID: 34539644 DOI: 10.3389/fimmu.2021.715072] [Reference Citation Analysis]
7 Bottino F, Tagliente E, Pasquini L, Napoli AD, Lucignani M, Figà-Talamanca L, Napolitano A. COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal. J Pers Med 2021;11:893. [PMID: 34575670 DOI: 10.3390/jpm11090893] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
8 Magoo R, Singh H, Jindal N, Hooda N, Rana PS. Deep learning-based bird eye view social distancing monitoring using surveillance video for curbing the COVID-19 spread. Neural Comput Appl 2021;:1-8. [PMID: 34230771 DOI: 10.1007/s00521-021-06201-5] [Reference Citation Analysis]
9 Alballa N, Al-Turaiki I. Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. Inform Med Unlocked 2021;24:100564. [PMID: 33842685 DOI: 10.1016/j.imu.2021.100564] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
10 Alcolea A, Resano J. FPGA Accelerator for Gradient Boosting Decision Trees. Electronics 2021;10:314. [DOI: 10.3390/electronics10030314] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]