BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Timin AS, Khashirova SY, Zhansitov A, Rumyantsev EV. Synthesis and application of silica hybrids grafted with new guanidine-containing polymers as highly effective adsorbents for bilirubin removal. Colloid Polym Sci 2015;293:1667-74. [DOI: 10.1007/s00396-015-3555-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Liu J, Lu X, Shu G, Li K, Kong X, Zheng S, Li T, Yang J. Heparin/polyethyleneimine dual-sided functional polyvinylidene fluoride plasma separation membrane for bilirubin removal. Journal of Membrane Science 2023. [DOI: 10.1016/j.memsci.2023.121404] [Reference Citation Analysis]
2 Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS Appl Mater Interfaces 2022. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Reference Citation Analysis]
3 Du J, Dong Z, Wen D, Yang X, Zhai M, Hua R, Zhao L. Selective recovery of rhenium from the simulating leaching solutions of uranium ore by amino guanidine functionalized microcrystalline cellulose microsphere. Journal of Molecular Liquids 2022;360:119399. [DOI: 10.1016/j.molliq.2022.119399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Çetin K. Magnetic nanoparticles embedded microcryogels for bilirubin removal. Process Biochemistry 2022;112:203-8. [DOI: 10.1016/j.procbio.2021.12.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Du K, Qiao L. Biotextile-based adsorbents for medical applications. Medical Textiles from Natural Resources 2022. [DOI: 10.1016/b978-0-323-90479-7.00003-8] [Reference Citation Analysis]
6 Qiao L, Li Y, Liu Y, Wang Y, Du K. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. J Chromatogr A 2020;1634:461659. [PMID: 33166890 DOI: 10.1016/j.chroma.2020.461659] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
7 He C, Li M, Zhang J, Yan B, Zhao W, Sun S, Zhao C. Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromol Biosci 2020;20:e2000153. [PMID: 32583960 DOI: 10.1002/mabi.202000153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li Q, Zhao W, Guo H, Yang J, Zhang J, Liu M, Xu T, Chen Y, Zhang L. Metal-Organic Framework Traps with Record-High Bilirubin Removal Capacity for Hemoperfusion Therapy. ACS Appl Mater Interfaces 2020;12:25546-56. [PMID: 32393019 DOI: 10.1021/acsami.0c03859] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
9 Ma Y, Chen J, Li J, Han W, Chai Y, Wang T, Zhang Q, Wang L, Wang W, Wang Z, Ou L. Selective adsorption of bilirubin against albumin to alkylamine functionalized PVA microspheres. J Biomater Sci Polym Ed 2019;30:337-54. [PMID: 30486758 DOI: 10.1080/09205063.2018.1553104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Song X, Huang X, Li Z, Li Z, Wu K, Jiao Y, Zhou C. Construction of blood compatible chitin/graphene oxide composite aerogel beads for the adsorption of bilirubin. Carbohydr Polym 2019;207:704-12. [PMID: 30600056 DOI: 10.1016/j.carbpol.2018.12.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
11 Li D, Chen Y, Xiao C, Yang W. Improvement of mechanical, thermal and tribological properties of (3-aminopropyl) triethoxysilane-modified graphene/polyimide nanocomposites by in situ polymerisation. Plastics, Rubber and Composites 2018;47:352-64. [DOI: 10.1080/14658011.2018.1493274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
12 Jiang X, Zhou D, Huang X, Zhao W, Zhao C. Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. Journal of Colloid and Interface Science 2017;504:214-22. [DOI: 10.1016/j.jcis.2017.05.039] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
13 Liu S, Zhong C, Chen J, Zhan J, He J, Zhu Y, Wang Y, Wang L, Ren L. Thermoresponsive Self-Assembled β-Cyclodextrin-Modified Surface for Blood Purification. ACS Biomater Sci Eng 2017;3:1083-91. [DOI: 10.1021/acsbiomaterials.7b00156] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu S, Duan B, Zeng X, Lu A, Xu X, Wang Y, Ye Q, Zhang L. Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. J Mater Chem B 2017;5:2952-63. [DOI: 10.1039/c7tb00101k] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 8.5] [Reference Citation Analysis]
15 Ma C, Gao Q, Xia K, Huang Z, Han B, Zhou C. Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin. Colloids and Surfaces B: Biointerfaces 2017;149:146-53. [DOI: 10.1016/j.colsurfb.2016.10.015] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 6.0] [Reference Citation Analysis]
16 Ma C, Gao Q, Zhou J, Chen Q, Han B, Xia K, Zhou C. Facile one-pot synthesis of magnetic nitrogen-doped porous carbon for high-performance bilirubin removal from BSA-rich solution. RSC Adv 2017;7:2081-91. [DOI: 10.1039/c6ra25027k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
17 Timin AS, Solomonov AV, Kumagai A, Miyawaki A, Khashirova SY, Zhansitov A, Rumyantsev EV. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection. Materials Chemistry and Physics 2016;183:422-9. [DOI: 10.1016/j.matchemphys.2016.08.048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
18 Timin AS, Khashirova SY, Rumyantsev EV, Goncharenko AA. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications. Materials Science and Engineering: C 2016;64:20-8. [DOI: 10.1016/j.msec.2016.03.057] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
19 Kudryavtsev P, HIT Holon Institute of Technology, 52 Golomb St., POB 305 Holon 5810201, Israel, Figovsky O, Kudryavtsev N, Polymate Ltd - Israel Research Center, P.O. Box 73, Migdal HaEmek 10550, Israel, Polymate Ltd - Israel Research Center, P.O. Box 73, Migdal HaEmek 10550, Israel. Advance in Nanocomposites Based on Hybrid Organo-Silicate Matrix. ChChT 2016;10:45-53. [DOI: 10.23939/chcht10.01.045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
20 Feldman D. Polymer nanocomposites in medicine. Journal of Macromolecular Science, Part A 2016;53:55-62. [DOI: 10.1080/10601325.2016.1110459] [Cited by in Crossref: 64] [Cited by in F6Publishing: 36] [Article Influence: 9.1] [Reference Citation Analysis]
21 Peng Z, Yang Y, Luo J, Nie C, Ma L, Cheng C, Zhao C. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomater Sci 2016;4:1392-401. [DOI: 10.1039/c6bm00328a] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
22 Dragan ES, Bucatariu F. Design and characterization of anionic hydrogels confined in Daisogel silica composites microspheres and their application in sustained release of proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;489:46-56. [DOI: 10.1016/j.colsurfa.2015.10.029] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]