BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu S, Wen L, Hou J, Nie S, Zhou J, Cao F, Lu Q, Qin Y, Fu Y, Yu X. Predicting the pathological response to chemoradiotherapy of non-mucinous rectal cancer using pretreatment texture features based on intravoxel incoherent motion diffusion-weighted imaging. Abdom Radiol (NY) 2019;44:2689-98. [PMID: 31030244 DOI: 10.1007/s00261-019-02032-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Nakao T, Shimada M, Yoshikawa K, Tokunaga T, Nishi M, Kashihara H, Takasu C, Wada Y, Yoshimoto T. Computed tomography texture analysis for the prediction of lateral pelvic lymph node metastasis of rectal cancer. World J Surg Oncol 2022;20:281. [PMID: 36057660 DOI: 10.1186/s12957-022-02750-8] [Reference Citation Analysis]
2 Su R, Wu S, Shen H, Chen Y, Zhu J, Zhang Y, Jia H, Li M, Chen W, He Y, Gao F. Combining Clinicopathology, IVIM-DWI and Texture Parameters for a Nomogram to Predict Treatment Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients. Front Oncol 2022;12:886101. [PMID: 35712519 DOI: 10.3389/fonc.2022.886101] [Reference Citation Analysis]
3 Gao Y, Pham J, Yoon S, Cao M, Hu P, Yang Y. Recent Advances in Functional MRI to Predict Treatment Response for Locally Advanced Rectal Cancer. Curr Colorectal Cancer Rep 2021;17:77-87. [DOI: 10.1007/s11888-021-00470-x] [Reference Citation Analysis]
4 Hou M, Sun JH. Emerging applications of radiomics in rectal cancer: State of the art and future perspectives. World J Gastroenterol 2021; 27(25): 3802-3814 [PMID: 34321845 DOI: 10.3748/wjg.v27.i25.3802] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Xu Q, Xu Y, Sun H, Jiang T, Xie S, Ooi BY, Ding Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag Res 2021;13:4317-28. [PMID: 34103987 DOI: 10.2147/CMAR.S309252] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
6 Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021;21:425-49. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
7 Staal FCR, van der Reijd DJ, Taghavi M, Lambregts DMJ, Beets-Tan RGH, Maas M. Radiomics for the Prediction of Treatment Outcome and Survival in Patients With Colorectal Cancer: A Systematic Review [Internet]. Clin Colorectal Cancer. 2021;20:52-71. [PMID: 33349519 DOI: 10.1016/j.clcc.2020.11.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
8 Baidya Kayal E, Kandasamy D, Khare K, Bakhshi S, Sharma R, Mehndiratta A. Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging. NMR in Biomedicine 2021;34. [DOI: 10.1002/nbm.4426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
9 Cao W, Li B, Gong J, Hu M, Li W, Pan X, Zhou Z. Diffusion-weighted magnetic resonance imaging of mucin pools in locally advanced rectal mucinous adenocarcinoma predicts tumor response to neoadjuvant therapy. European Journal of Radiology 2020;125:108890. [DOI: 10.1016/j.ejrad.2020.108890] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]