BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hemke R, Buckless CG, Tsao A, Wang B, Torriani M. Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skeletal Radiol 2020;49:387-95. [PMID: 31396667 DOI: 10.1007/s00256-019-03289-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Gohla G, Kraus MS, Peyker I, Springer F, Keller G. Diagnostic Accuracy of 128-Slice Single-Source CT for the Detection of Dislocated Bucket Handle Meniscal Tears in the Setting of an Acute Knee Trauma—Correlation with MRI and Arthroscopy. Diagnostics 2023;13:1295. [DOI: 10.3390/diagnostics13071295] [Reference Citation Analysis]
2 Elhakim T, Trinh K, Mansur A, Bridge C, Daye D. Role of Machine Learning-Based CT Body Composition in Risk Prediction and Prognostication: Current State and Future Directions. Diagnostics (Basel) 2023;13. [PMID: 36900112 DOI: 10.3390/diagnostics13050968] [Reference Citation Analysis]
3 Shen H, He P, Ren Y, Huang Z, Li S, Wang G, Cong M, Luo D, Shao D, Lee EY, Cui R, Huo L, Qin J, Liu J, Hu Z, Liu Z, Zhang N. A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment. Quant Imaging Med Surg 2023;13:1384-98. [PMID: 36915346 DOI: 10.21037/qims-22-330] [Reference Citation Analysis]
4 Pan MZ, Liao XL, Li Z, Deng YW, Chen Y, Bian GB. Semi-Supervised Medical Image Segmentation Guided by Bi-Directional Constrained Dual-Task Consistency. Bioengineering (Basel) 2023;10. [PMID: 36829720 DOI: 10.3390/bioengineering10020225] [Reference Citation Analysis]
5 Bonaldi L, Pretto A, Pirri C, Uccheddu F, Fontanella CG, Stecco C. Deep Learning-Based Medical Images Segmentation of Musculoskeletal Anatomical Structures: A Survey of Bottlenecks and Strategies. Bioengineering (Basel) 2023;10. [PMID: 36829631 DOI: 10.3390/bioengineering10020137] [Reference Citation Analysis]
6 Chang CY, Huber FA, Yeh KJ, Buckless C, Torriani M. Original research: utilization of a convolutional neural network for automated detection of lytic spinal lesions on body CTs. Skeletal Radiol 2023. [PMID: 36651936 DOI: 10.1007/s00256-023-04283-x] [Reference Citation Analysis]
7 Buccino F, Aiazzi I, Casto A, Liu B, Sbarra MC, Ziarelli G, Banfi G, Vergani LM. The synergy of synchrotron imaging and convolutional neural networks towards the detection of human micro-scale bone architecture and damage. J Mech Behav Biomed Mater 2023;137:105576. [PMID: 36413863 DOI: 10.1016/j.jmbbm.2022.105576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zheng Y, Deng L, Lin Q, Xu W, Wang F, Li J. KRS-Net: A Classification Approach Based on Deep Learning for Koi with High Similarity. Biology (Basel) 2022;11. [PMID: 36552237 DOI: 10.3390/biology11121727] [Reference Citation Analysis]
9 Ackermans LLGC, Volmer L, Timmermans QMMA, Brecheisen R, Damink SMWO, Dekker A, Loeffen D, Poeze M, Blokhuis TJ, Wee L, Ten Bosch JA. Clinical evaluation of automated segmentation for body composition analysis on abdominal L3 CT slices in polytrauma patients. Injury 2022;53 Suppl 3:S30-41. [PMID: 35680433 DOI: 10.1016/j.injury.2022.05.004] [Reference Citation Analysis]
10 Kalsi S, Singh J, Sharma N. Prediction of Composition parameters of Cortical bone using Artificial Neutral Network. 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) 2022. [DOI: 10.1109/icrito56286.2022.9964964] [Reference Citation Analysis]
11 Fleps I, Morgan EF. A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning. Curr Osteoporos Rep 2022. [PMID: 36048316 DOI: 10.1007/s11914-022-00743-w] [Reference Citation Analysis]
12 Tao S, Wang Z, Chen H. Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module. Computational and Mathematical Methods in Medicine 2022;2022:1-8. [DOI: 10.1155/2022/3289663] [Reference Citation Analysis]
13 Yuan S, Liu Q, Liao S, Han F, Wei H, Zhang Y. Rethinking Computer-Aided Pelvis Segmentation. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2022. [DOI: 10.1109/icassp43922.2022.9747248] [Reference Citation Analysis]
14 Kang BK, Han Y, Oh J, Lim J, Ryu J, Yoon MS, Lee J, Ryu S. Automatic Segmentation for Favourable Delineation of Ten Wrist Bones on Wrist Radiographs Using Convolutional Neural Network. J Pers Med 2022;12. [PMID: 35629198 DOI: 10.3390/jpm12050776] [Reference Citation Analysis]
15 Lee SB, Cho YJ, Yoon SH, Lee YY, Kim SH, Lee S, Choi YH, Cheon JE. Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network. Eur Radiol 2022. [PMID: 35524785 DOI: 10.1007/s00330-022-08829-w] [Reference Citation Analysis]
16 Pan S, Lei Y, Wang T, Wynne J, Roper J, Jani AB, Patel P, Bradley JD, Liu T, Yang X. Male pelvic multi-organ segmentation using V-transformer network. Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging 2022. [DOI: 10.1117/12.2628064] [Reference Citation Analysis]
17 Bedrikovetski S, Seow W, Kroon HM, Traeger L, Moore JW, Sammour T. Artificial intelligence for body composition and sarcopenia evaluation on computed tomography: A systematic review and meta-analysis. European Journal of Radiology 2022;149:110218. [DOI: 10.1016/j.ejrad.2022.110218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Huang Y, Tsai Y, Lin P, Yeh Y, Hsu Y, Wu P, Shen M, Shi Z. The Value of Artificial Intelligence-Assisted Imaging in Identifying Diagnostic Markers of Sarcopenia in Patients with Cancer. Disease Markers 2022;2022:1-14. [DOI: 10.1155/2022/1819841] [Reference Citation Analysis]
19 Xiong X, Smith BJ, Graves SA, Sunderland JJ, Graham MM, Gross BA, Buatti JM, Beichel RR. Quantification of uptake in pelvis F-18 FLT PET-CT images using a 3D localization and segmentation CNN. Med Phys 2022;49:1585-98. [PMID: 34982836 DOI: 10.1002/mp.15440] [Reference Citation Analysis]
20 Richardson ML, Amini B, Kinahan PE. Bone and Soft Tissue Tumors. Radiologic Clinics of North America 2022;60:339-58. [DOI: 10.1016/j.rcl.2021.11.011] [Reference Citation Analysis]
21 Ko S, Pareek A, Ro DH, Lu Y, Camp CL, Martin RK, Krych AJ. Artificial intelligence in orthopedics: three strategies for deep learning with orthopedic specific imaging. Knee Surg Sports Traumatol Arthrosc 2022;30:758-61. [PMID: 35022826 DOI: 10.1007/s00167-021-06838-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
22 Ye RZ, Noll C, Richard G, Lepage M, Turcotte ÉE, Carpentier AC. DeepImageTranslator: A free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis. SLAS Technol 2022;27:76-84. [PMID: 35058205 DOI: 10.1016/j.slast.2021.10.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Marquardt JP, Roeland EJ, Van Seventer EE, Best TD, Horick NK, Nipp RD, Fintelmann FJ. Percentile-based averaging and skeletal muscle gauge improve body composition analysis: validation at multiple vertebral levels. J Cachexia Sarcopenia Muscle 2022;13:190-202. [PMID: 34729952 DOI: 10.1002/jcsm.12848] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
24 Groot OQ, Bongers MER, Buckless CG, Twining PK, Kapoor ND, Janssen SJ, Schwab JH, Torriani M, Bredella MA. Body composition predictors of mortality in patients undergoing surgery for long bone metastases. J Surg Oncol 2022. [PMID: 35023149 DOI: 10.1002/jso.26793] [Reference Citation Analysis]
25 Yi PH, Arun A, Hafezi-Nejad N, Choy G, Sair HI, Hui FK, Fritz J. Can AI distinguish a bone radiograph from photos of flowers or cars? Evaluation of bone age deep learning model on inappropriate data inputs. Skeletal Radiol 2022;51:401-6. [PMID: 34351456 DOI: 10.1007/s00256-021-03880-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Tolonen A, Pakarinen T, Sassi A, Kyttä J, Cancino W, Rinta-Kiikka I, Pertuz S, Arponen O. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. Eur J Radiol 2021;145:109943. [PMID: 34839215 DOI: 10.1016/j.ejrad.2021.109943] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
27 Paravastu SS, Hasani N, Farhadi F, Collins MT, Edenbrandt L, Summers RM, Saboury B. Applications of Artificial Intelligence in 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography:: Current State and Future Directions. PET Clin 2022;17:115-35. [PMID: 34809861 DOI: 10.1016/j.cpet.2021.09.012] [Reference Citation Analysis]
28 Gohmann RF, Temiz B, Seitz P, Gottschling S, Lücke C, Krieghoff C, Blume C, Horn M, Gutberlet M. Segmentation and characterization of visceral and abdominal subcutaneous adipose tissue on CT with and without contrast medium: influence of 2D- and 3D-segmentation. Quant Imaging Med Surg 2021;11:4258-68. [PMID: 34603981 DOI: 10.21037/qims-21-178] [Reference Citation Analysis]
29 Greco F, Mallio CA. Artificial intelligence and abdominal adipose tissue analysis: a literature review. Quant Imaging Med Surg 2021;11:4461-74. [PMID: 34603998 DOI: 10.21037/qims-21-370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Tan Q, Baek S. MUSCULOSKELETAL ULTRASOUND AND ITS APPLICATION IN SPORTS MEDICINE. Rev Bras Med Esporte 2021;27:764-6. [DOI: 10.1590/1517-8692202127082021_0349] [Reference Citation Analysis]
31 Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol 2021;65:545-63. [PMID: 34145766 DOI: 10.1111/1754-9485.13261] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 23.5] [Reference Citation Analysis]
32 Mauricaite R, Mi E, Chen J, Ho A, Pakzad-shahabi L, Williams M. A fully automated deep learning pipeline to assess muscle mass in brain tumor patients. 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS) 2021. [DOI: 10.1109/cbms52027.2021.00095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Ye RZ, Noll C, Richard G, Lepage M, Turcotte ÉE, Carpentier AC. DeepImageTranslator: a free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis.. [DOI: 10.1101/2021.05.15.444315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Liu P, Han H, Du Y, Zhu H, Li Y, Gu F, Xiao H, Li J, Zhao C, Xiao L, Wu X, Zhou SK. Deep learning to segment pelvic bones: large-scale CT datasets and baseline models. Int J Comput Assist Radiol Surg 2021;16:749-56. [PMID: 33864189 DOI: 10.1007/s11548-021-02363-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
35 Higgins MI, Marquardt JP, Master VA, Fintelmann FJ, Psutka SP. Machine Learning in Body Composition Analysis. Eur Urol Focus 2021;7:713-6. [PMID: 33771476 DOI: 10.1016/j.euf.2021.03.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Ackermans LLGC, Volmer L, Wee L, Brecheisen R, Sánchez-González P, Seiffert AP, Gómez EJ, Dekker A, Ten Bosch JA, Olde Damink SMW, Blokhuis TJ. Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors (Basel) 2021;21:2083. [PMID: 33809710 DOI: 10.3390/s21062083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
37 Rozynek M, Kucybała I, Urbanik A, Wojciechowski W. Use of artificial intelligence in the imaging of sarcopenia: A narrative review of current status and perspectives. Nutrition 2021;89:111227. [PMID: 33930789 DOI: 10.1016/j.nut.2021.111227] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
38 Vollautomatische Segmentierung von Bindegewebekompartimenten im CT. Rofo 2021;193:241-242. [DOI: 10.1055/a-1241-9765] [Reference Citation Analysis]
39 Bunnell KM, Thaweethai T, Buckless C, Shinnick DJ, Torriani M, Foulkes AS, Bredella MA. Body composition predictors of outcome in patients with COVID-19. Int J Obes (Lond) 2021;45:2238-43. [PMID: 34244597 DOI: 10.1038/s41366-021-00907-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
40 Magudia K, Bridge CP, Bay CP, Babic A, Fintelmann FJ, Troschel FM, Miskin N, Wrobel WC, Brais LK, Andriole KP, Wolpin BM, Rosenthal MH. Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-specific Reference Curves. Radiology 2021;298:319-29. [PMID: 33231527 DOI: 10.1148/radiol.2020201640] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 11.7] [Reference Citation Analysis]
41 Nadeem MW, Goh HG, Ali A, Hussain M, Khan MA, Ponnusamy VA. Bone Age Assessment Empowered with Deep Learning: A Survey, Open Research Challenges and Future Directions. Diagnostics (Basel) 2020;10:E781. [PMID: 33022947 DOI: 10.3390/diagnostics10100781] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
42 Hemke R, Buckless C, Torriani M. Quantitative Imaging of Body Composition. Semin Musculoskelet Radiol 2020;24:375-85. [PMID: 32992366 DOI: 10.1055/s-0040-1708824] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Boutin RD, Lenchik L. Value-Added Opportunistic CT: Insights Into Osteoporosis and Sarcopenia. American Journal of Roentgenology 2020;215:582-94. [DOI: 10.2214/ajr.20.22874] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
44 Saxby DJ, Killen BA, Pizzolato C, Carty CP, Diamond LE, Modenese L, Fernandez J, Davico G, Barzan M, Lenton G, da Luz SB, Suwarganda E, Devaprakash D, Korhonen RK, Alderson JA, Besier TF, Barrett RS, Lloyd DG. Machine learning methods to support personalized neuromusculoskeletal modelling. Biomech Model Mechanobiol 2020;19:1169-85. [DOI: 10.1007/s10237-020-01367-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
45 Edwards K, Chhabra A, Dormer J, Jones P, Boutin RD, Lenchik L, Fei B. Abdominal muscle segmentation from CT using a convolutional neural network. Proc SPIE Int Soc Opt Eng 2020;11317:113170L. [PMID: 32577045 DOI: 10.1117/12.2549406] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]