BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paschkowsky S, Oestereich F, Munter LM. Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2018;251:369-78. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
Number Citing Articles
1 Bondar AN, Lemieux MJ. Reactions at Biomembrane Interfaces. Chem Rev 2019;119:6162-83. [PMID: 31021080 DOI: 10.1021/acs.chemrev.8b00596] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
2 Lee YJ, Ch'ng TH. RIP at the Synapse and the Role of Intracellular Domains in Neurons. Neuromolecular Med 2020;22:1-24. [PMID: 31346933 DOI: 10.1007/s12017-019-08556-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Kawatsuki A, Morita SY, Watanabe N, Hibino E, Mitsuishi Y, Sugi T, Murayama S, Nishimura M. Lipid class composition of membrane and raft fractions from brains of individuals with Alzheimer's disease. Biochem Biophys Rep 2019;20:100704. [PMID: 31867447 DOI: 10.1016/j.bbrep.2019.100704] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
4 Bondar A, Keller S. Lipid Membranes and Reactions at Lipid Interfaces: Theory, Experiments, and Applications. J Membrane Biol 2018;251:295-8. [DOI: 10.1007/s00232-018-0039-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Albano JMR, Jara GE, Fernández ML, Facelli JC, Ferraro MB, Pickholz M. The Effects of Calcium on Lipid-Protein Interactions and Ion Flux in the Cx26 Connexon Embedded into a POPC Bilayer. J Membr Biol 2019;252:451-64. [PMID: 31440780 DOI: 10.1007/s00232-019-00088-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Bohg C, Öster C, Utesch T, Bischoff S, Lange S, Shi C, Sun H, Lange A. A combination of solid-state NMR and MD simulations reveals the binding mode of a rhomboid protease inhibitor. Chem Sci 2021;12:12754-62. [PMID: 34703562 DOI: 10.1039/d1sc02146j] [Reference Citation Analysis]
7 Kreutzberger AJB, Urban S. Single-Molecule Analyses Reveal Rhomboid Proteins Are Strict and Functional Monomers in the Membrane. Biophys J 2018;115:1755-61. [PMID: 30342748 DOI: 10.1016/j.bpj.2018.09.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Paschkowsky S, Recinto SJ, Young JC, Bondar AN, Munter LM. Membrane cholesterol as regulator of human rhomboid protease RHBDL4. J Biol Chem 2018;293:15556-68. [PMID: 30143535 DOI: 10.1074/jbc.RA118.002640] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
9 Recinto SJ, Paschkowsky S, Munter LM. An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4. Biological Chemistry 2018;399:1399-408. [DOI: 10.1515/hsz-2018-0259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]