BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shajahan A, Pepi LE, Rouhani DS, Heiss C, Azadi P. Glycosylation of SARS-CoV-2: structural and functional insights. Anal Bioanal Chem 2021;413:7179-93. [PMID: 34235568 DOI: 10.1007/s00216-021-03499-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Deniz Tekin E. Investigation of the effects of N-Acetylglucosamine on the stability of the spike protein in SARS-CoV-2 by molecular dynamics simulations. Comput Theor Chem 2023;1222:114049. [PMID: 36743995 DOI: 10.1016/j.comptc.2023.114049] [Reference Citation Analysis]
2 Yang D, Wu Y, Turan I, Keil J, Li K, Chen MH, Liu R, Wang L, Sun XL, Chen GY. Targeting intracellular Neu1 for coronavirus infection treatment. iScience 2023;26:106037. [PMID: 36714013 DOI: 10.1016/j.isci.2023.106037] [Reference Citation Analysis]
3 Huang J, Hou S, An J, Zhou C. In-depth characterization of protein N-glycosylation for a COVID-19 variant-design vaccine spike protein. Anal Bioanal Chem 2023;:1-10. [PMID: 36698045 DOI: 10.1007/s00216-023-04533-w] [Reference Citation Analysis]
4 Casasanta MA, Jonaid GM, Kaylor L, Luqiu WY, Dicecco L, Solares MJ, Berry S, Dearnaley WJ, Kelly DF. Structural Insights of the SARS-CoV-2 Nucleocapsid Protein: Implications for the Inner-workings of Rapid Antigen Tests. Microscopy and Microanalysis 2022. [DOI: 10.1093/micmic/ozac036] [Reference Citation Analysis]
5 Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022;14. [PMID: 36433141 DOI: 10.3390/polym14225014] [Reference Citation Analysis]
6 Shajahan A, Pepi L, Kumar B, Murray N, Azadi P. Site Specific N- and O-glycosylation mapping of the Spike Proteins of SARS-CoV-2 Variants of Concern.. [DOI: 10.21203/rs.3.rs-2188138/v1] [Reference Citation Analysis]
7 Dong X, Li X, Chen C, Zhang X, Liang X. Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses. Analytica Chimica Acta 2022;1230:340394. [DOI: 10.1016/j.aca.2022.340394] [Reference Citation Analysis]
8 Chatterjee S, Zaia J. Proteomics-based mass spectrometry profiling of SARS-CoV-2 infection from human nasopharyngeal samples. Mass Spectrom Rev 2022;:e21813. [PMID: 36177493 DOI: 10.1002/mas.21813] [Reference Citation Analysis]
9 Liya DH, Anand NM, Jainarayanan AK, Elanchezhian M, Seetharaman M, Balakannan D, Pradhan AK. Drug repurposing and sequence analysis in S-glycoprotein variants reveals critical signature patterns and destabilization of receptor-binding domain in omicron variant. J Biomol Struct Dyn 2022;:1-18. [PMID: 36173706 DOI: 10.1080/07391102.2022.2127902] [Reference Citation Analysis]
10 Wang H, Yang T, Jiang W, Qin M, Sun Z, Dai W, Jiang Y. Identification and characterization of a novel cell binding and cross-reactive region on spike protein of SARS-CoV-2. Sci Rep 2022;12:15668. [PMID: 36123381 DOI: 10.1038/s41598-022-19886-y] [Reference Citation Analysis]
11 Yang D, Wu Y, Turan I, Keil J, Li K, Chen MH, Liu R, Wang L, Sun X, Chen G. Targeting intracellular Neu1 for Coronavirus Infection Treatment.. [DOI: 10.1101/2022.09.09.507342] [Reference Citation Analysis]
12 Rabus JM, Guan S, Schultz LM, Abutokaikah MT, Maître P, Bythell BJ. Protonated α-N-Acetyl Galactose Glycopeptide Dissociation Chemistry. J Am Soc Mass Spectrom 2022. [PMID: 36018613 DOI: 10.1021/jasms.2c00155] [Reference Citation Analysis]
13 Tripathi N, Goel B, Bhardwaj N, Vishwakarma RA, Jain SK. Exploring the Potential of Chemical Inhibitors for Targeting Post-translational Glycosylation of Coronavirus (SARS-CoV-2). ACS Omega. [DOI: 10.1021/acsomega.2c02345] [Reference Citation Analysis]
14 Li H, Gao N, Liu C, Liu X, Wu F, Dai N, Han J, Li Q. The Cholesterol-Binding Sequence in Monomeric C-Reactive Protein Binds to the SARS-CoV-2 Spike Receptor-Binding Domain and Blocks Interaction With Angiotensin-Converting Enzyme 2. Front Immunol 2022;13:918731. [DOI: 10.3389/fimmu.2022.918731] [Reference Citation Analysis]
15 Kircheis R, Planz O. Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron? Int J Mol Sci 2022;23:5966. [PMID: 35682644 DOI: 10.3390/ijms23115966] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Bustos-garcia B, Garza-manero S, Cano-dominguez N, Lopez-sanchez DM, Salgado-montes de Oca G, Salgado-aguayo A, Recillas-targa F, Avila-rios S, Valdes VJ. Development and Testing of a Low-Cost Inactivation Buffer That Allows for Direct SARS-CoV-2 Detection in Saliva. Vaccines 2022;10:730. [DOI: 10.3390/vaccines10050730] [Reference Citation Analysis]
17 Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022. [PMID: 35388686 DOI: 10.1021/acs.analchem.1c04874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hassan. E. Konozy E, El-fadil M. Osman M, Ibrahim Dirar A. Plant Lectins as Potent Anti-coronaviruses, Anti-inflammatory, Antinociceptive and Antiulcer Agents. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 Marques-Pereira C, Pires MN, Gouveia RP, Pereira NN, Caniceiro AB, Rosário-Ferreira N, Moreira IS. SARS-CoV-2 Membrane Protein: From Genomic Data to Structural New Insights. Int J Mol Sci 2022;23:2986. [PMID: 35328409 DOI: 10.3390/ijms23062986] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Vedula P, Tang H, Speicher DW, Kashina A; The UPenn COVID Processing Unit. Protein Posttranslational Signatures Identified in COVID-19 Patient Plasma. Front Cell Dev Biol 2022;10:807149. [DOI: 10.3389/fcell.2022.807149] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
21 Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022;7:26. [PMID: 35087058 DOI: 10.1038/s41392-022-00884-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 46.0] [Reference Citation Analysis]
22 Wang X, Bie L, Gao J. Structural Insights into the Cofactor Role of Heparin/Heparan Sulfate in Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. J Chem Inf Model . [DOI: 10.1021/acs.jcim.1c01484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021;14:35. [PMID: 35062238 DOI: 10.3390/v14010035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Vedula P, Tang H, Speicher DW, Kashina A, The UPenn COVID Processing Unit. Protein Posttranslational Signatures Identified in COVID-19 Patient Plasma.. [DOI: 10.1101/2021.12.15.472822] [Reference Citation Analysis]
25 Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021;6:396. [PMID: 34782609 DOI: 10.1038/s41392-021-00809-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 22.0] [Reference Citation Analysis]