BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu W, Zhao A, Zuo F, Khan R, Hussain HMJ, Li J. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum. Anal Bioanal Chem 2020;412:4565-74. [DOI: 10.1007/s00216-020-02709-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Ebirim CG, Esan O, Adetona MO, Oyagbemi AA, Omobowale TO, Oladele OA, Adedapo AA, Oguntibeju OO, Yakubu MA. Naringin administration mitigates oxidative stress, anemia, and hypertension in lead acetate-induced cardio-renal dysfunction in cockerel chicks. Environ Sci Pollut Res Int 2023;30:34890-903. [PMID: 36520287 DOI: 10.1007/s11356-022-24656-4] [Reference Citation Analysis]
2 Zhu X, Ning Y, Zhang Z, Wen Y, Zhao Y, Wang H. A universal approach for sensitive and rapid detection of different pathogenic bacteria based on aptasensor-assisted SERS technique. Anal Bioanal Chem 2023;415:1529-43. [PMID: 36705734 DOI: 10.1007/s00216-023-04551-8] [Reference Citation Analysis]
3 Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core–shell SERS‐based biosensors. Exploration 2023. [DOI: 10.1002/exp.20220072] [Reference Citation Analysis]
4 Wang L, Tang S, Li L, Jin K, Xie X, Chen Y, Cai K, Zhang J. Nucleic Acids Enabled‐Interfacial Engineering for Biomarker Sensing with Distance Constraint Effects. Advanced Sensor Research 2023. [DOI: 10.1002/adsr.202200062] [Reference Citation Analysis]
5 Kumar K, Singh D. Toxicity and bioremediation of the lead: a critical review. Int J Environ Health Res 2023;:1-31. [PMID: 36617394 DOI: 10.1080/09603123.2023.2165047] [Reference Citation Analysis]
6 Hui CY, Guo Y, Zhu DL, Li LM, Yi J, Zhang NX. Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor. Biosens Bioelectron 2022;214:114531. [PMID: 35810697 DOI: 10.1016/j.bios.2022.114531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li J, Chen X, Zhu J. DNA functionalized plasmonic nanoassemblies as SERS sensors for environmental analysis. Aggregate 2022. [DOI: 10.1002/agt2.271] [Reference Citation Analysis]
8 Zhang Z, Yuan J, Zheng H, Liu Z, Lu G, Huang Q, Liu M. Highly Sensitive Electrochemical Determination of Lead(II) by Double Stranded DNA (dsDNA) with a Carbon Paper/Reduced Graphene Oxide (CP/rGO) Substrate by Differential Pulse Anodic Stripping Voltammetry (DPASV). Analytical Letters. [DOI: 10.1080/00032719.2022.2119245] [Reference Citation Analysis]
9 Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022;:1-45. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Reference Citation Analysis]
10 Li Y, Li H, Zheng H, Wu H, Liu K, Wang J, Yang C, Ma X, Sun C. Signal-on fluorescent strategy based on RNA cleavage-inhibited catalytic hairpin assembly and photo-induced electron transfer for Pb2+ detection. Sensors and Actuators B: Chemical 2022;364:131880. [DOI: 10.1016/j.snb.2022.131880] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Shi S, Chen J, Wang X, Xiao M, Chandrasekaran AR, Li L, Yi C, Pei H. Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Adv Funct Materials. [DOI: 10.1002/adfm.202201069] [Reference Citation Analysis]
12 Xu J, Liu M, Zhao W, Wang S, Gui M, Li H, Yu R. DNAzyme-based cascade signal amplification strategy for highly sensitive detection of lead ions in the environment. Journal of Hazardous Materials 2022;429:128347. [DOI: 10.1016/j.jhazmat.2022.128347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Xu W, Zhang Y, Chen H, Dong J, Khan R, Shen J, Liu H. DNAzyme signal amplification based on Au@Ag core-shell nanorods for highly sensitive SERS sensing miRNA-21. Anal Bioanal Chem 2022. [PMID: 35419693 DOI: 10.1007/s00216-022-04053-z] [Reference Citation Analysis]
14 Teng W, Zhao J, Li Q, Shi P, Zhang J, Yan M, Zhang S. A DNAzyme-mediated signal amplification biosensor for ultrasensitive detection of lead ions based on SERS tags. Sens Diagn 2022. [DOI: 10.1039/d2sd00147k] [Reference Citation Analysis]
15 Zhao X, Dai X, Zhou Y, Zhang H, Cui X, Zhai X, Yu B, Song Z. A sensitive fluorescence biosensor based on metal ion-mediated DNAzyme activity for amplified detection of acetylcholinesterase. Analyst 2022;147:2575-2581. [DOI: 10.1039/d2an00414c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xu G, Song P, Xia L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics 2021;10:4419-45. [DOI: 10.1515/nanoph-2021-0363] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Li M, Cai YN, Peng CF, Wei XL, Wang ZP. DNA dendrimer-templated copper nanoparticles: self-assembly, aggregation-induced emission enhancement and sensing of lead ions. Mikrochim Acta 2021;188:346. [PMID: 34537909 DOI: 10.1007/s00604-021-04967-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 [DOI: 10.1109/nano51122.2021.9514272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Wang X, Jiang J, Zhang Q, Bai Z. The high active SERs substrate prepared by self assembling Ag nanoparticles on PPy@PEDOT:PSS film to detect the sodium formaldehyde sulfoxylate molecules. Optical Materials 2021;114:110955. [DOI: 10.1016/j.optmat.2021.110955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021;290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
21 Salek Maghsoudi A, Hassani S, Mirnia K, Abdollahi M. Recent Advances in Nanotechnology-Based Biosensors Development for Detection of Arsenic, Lead, Mercury, and Cadmium. Int J Nanomedicine 2021;16:803-32. [PMID: 33568907 DOI: 10.2147/IJN.S294417] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
22 Cao W, Luo Y, Li J, Qian A, Wang Q, Wang X, Duan L, Wu Y, Han C. Detection of benzo[a]pyrene with silver nanorod substrate in river water and soil based on surface-enhanced raman scattering. Results in Chemistry 2021;3:100126. [DOI: 10.1016/j.rechem.2021.100126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
23 Yang Y, Li W, Liu J. Review of recent progress on DNA-based biosensors for Pb2+ detection. Anal Chim Acta 2021;1147:124-43. [PMID: 33485571 DOI: 10.1016/j.aca.2020.12.056] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
24 Hu L, Fu X, Kong G, Yin Y, Meng H, Ke G, Zhang X. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020;8:9449-65. [DOI: 10.1039/d0tb01750g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]