BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hong G, Zhang D, He Y, Yang Y, Chen P, Yang H, Zhou Z, Liu Y, Wang Y. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion. Anal Bioanal Chem 2019;411:6837-45. [PMID: 31471682 DOI: 10.1007/s00216-019-02049-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Tian Y, Yin X, Hu H, Ren J, Jia C, Li Y, Sun J, Wang J, Zhang D. Highly photothermal and biodegradable nanotags-embedded immunochromatographic assay for the rapid monitoring of nitrofurazone. Food Chemistry 2023;404:134686. [DOI: 10.1016/j.foodchem.2022.134686] [Reference Citation Analysis]
2 Wang Z, Wang M, Wang X, Hao Z, Han S, Wang T, Zhang H. Photothermal-based nanomaterials and photothermal-sensing: An overview. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114883] [Reference Citation Analysis]
3 Zhang W, Zhang C, Zhou H, Tian T, Chen H, Zhang H, Yang F. Paper-based sensor depending on the Prussian blue pH sensitivity: Smartphone-assisted detection of urea. Microchemical Journal 2022;181:107783. [DOI: 10.1016/j.microc.2022.107783] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Wang Y, Liu Y, Wu Q, Fu R, Liu H, Cui Y, Zhao Q, Chen A, Zhang Y, Jiao B, He Y. Seed-mediated in situ growth of photothermal reagent gold nanostars: Mechanism study and preliminary assay application. Analytica Chimica Acta 2022;1231:340424. [DOI: 10.1016/j.aca.2022.340424] [Reference Citation Analysis]
5 Wen Y, Yuan Y, Zhang B, Lin J, Zhao Z, Li J, Cheng Y. Molybdenum blue mediated photothermal immunoassay for CEA detection based on Ag4P2O7@Ag nanocomposites. Talanta 2022;249:123665. [PMID: 35691125 DOI: 10.1016/j.talanta.2022.123665] [Reference Citation Analysis]
6 Liu Z, Hua Q, Wang J, Liang Z, Zhou Z, Shen X, Lei H, Li X. Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chem 2022;369:131008. [PMID: 34500205 DOI: 10.1016/j.foodchem.2021.131008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
7 Fu G, Hou R, Mou X, Li X. Integration and Quantitative Visualization of 3,3',5,5'-Tetramethylbenzidine-Probed Enzyme-Linked Immunosorbent Assay-like Signals in a Photothermal Bar-Chart Microfluidic Chip for Multiplexed Immunosensing. Anal Chem 2021;93:15105-14. [PMID: 34734693 DOI: 10.1021/acs.analchem.1c03387] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
8 Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coordination Chemistry Reviews 2021;447:214149. [DOI: 10.1016/j.ccr.2021.214149] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Zhang X, Rao H, Huang H, Zhang K, Wei M, Luo M, Xue X, Xue Z, Lu X. A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white. Anal Bioanal Chem 2021;413:6627-37. [PMID: 34476525 DOI: 10.1007/s00216-021-03629-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Wang X, Xue CH, Yang D, Jia ST, Ding YR, Lei L, Gao KY, Jia TT. Modification of a nitrocellulose membrane with nanofibers for sensitivity enhancement in lateral flow test strips. RSC Adv 2021;11:26493-501. [PMID: 35479983 DOI: 10.1039/d1ra04369b] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zhou W, Fu G, Li X. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers. Anal Chem 2021;93:7754-62. [PMID: 33999603 DOI: 10.1021/acs.analchem.1c01323] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
12 Zhang K, Zhou X, Xue X, Luo M, Liu X, Xue Z. Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect. Anal Bioanal Chem 2021;413:3655-65. [PMID: 33829276 DOI: 10.1007/s00216-021-03312-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Zhao Q, Lu D, Zhang G, Zhang D, Shi X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021;223:121722. [DOI: 10.1016/j.talanta.2020.121722] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
14 Wang X, Yang D, Jia ST, Zhao LL, Jia TT, Xue CH. Electrospun nitrocellulose membrane for immunochromatographic test strip with high sensitivity. Mikrochim Acta 2020;187:644. [PMID: 33155110 DOI: 10.1007/s00604-020-04626-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Han X, Lin S, Li Y, Cheng C, Han X. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer. Analytica Chimica Acta 2020;1098:117-24. [DOI: 10.1016/j.aca.2019.11.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
16 Zhi L, Sun A, Tang D. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes. Analyst 2020;145:4164-72. [DOI: 10.1039/d0an00417k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]