BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Faron-Górecka A, Kuśmider M, Kolasa M, Żurawek D, Szafran-Pilch K, Gruca P, Pabian P, Solich J, Papp M, Dziedzicka-Wasylewska M. Chronic mild stress alters the somatostatin receptors in the rat brain. Psychopharmacology (Berl) 2016;233:255-66. [PMID: 26462807 DOI: 10.1007/s00213-015-4103-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Korlatowicz A, Pabian P, Solich J, Kolasa M, Latocha K, Dziedzicka-wasylewska M, Faron-górecka A. Habenula as a Possible Target for Treatment-Resistant Depression Phenotype in Wistar Kyoto Rats. Mol Neurobiol 2022. [DOI: 10.1007/s12035-022-03103-y] [Reference Citation Analysis]
2 Chelliah R, Park SJ, Oh S, Lee E, Daliri EB, Elahi F, Park CR, Sultan G, Madar IH, Oh DH. Unveiling the potentials of bioactive oligosaccharide1-kestose (GF2) from Musa paradisiaca Linn peel with an anxiolytic effect based on gut microbiota modulation in stressed mice model. Food Bioscience 2022;49:101881. [DOI: 10.1016/j.fbio.2022.101881] [Reference Citation Analysis]
3 Markov DD. Sucrose Preference Test as a Measure of Anhedonic Behavior in a Chronic Unpredictable Mild Stress Model of Depression: Outstanding Issues. Brain Sciences 2022;12:1287. [DOI: 10.3390/brainsci12101287] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Strekalova T, Liu Y, Kiselev D, Khairuddin S, Chiu JLY, Lam J, Chan YS, Pavlov D, Proshin A, Lesch KP, Anthony DC, Lim LW. Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022. [PMID: 35072761 DOI: 10.1007/s00213-021-05982-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
5 Gaskins DL, Burke AR, Sajdyk TJ, Truitt WA, Dietrich AD, Shekhar A. Role of Basolateral Amygdalar Somatostatin 2 Receptors in a Rat Model of Chronic Anxiety. Neuroscience 2021;477:40-9. [PMID: 34487822 DOI: 10.1016/j.neuroscience.2021.08.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Albrecht A, Redavide E, Regev-Tsur S, Stork O, Richter-Levin G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci Biobehav Rev 2021;122:229-44. [PMID: 33188820 DOI: 10.1016/j.neubiorev.2020.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
7 Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. Fish Shellfish Immunol 2020;106:887-97. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020;2020:8858415. [PMID: 32802040 DOI: 10.1155/2020/8858415] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
9 Roman E, Weininger J, Lim B, Roman M, Barry D, Tierney P, O'Hanlon E, Levins K, O'Keane V, Roddy D. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus. Brain Struct Funct 2020;225:1437-58. [PMID: 32367265 DOI: 10.1007/s00429-020-02069-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
10 Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020;9:E1026. [PMID: 32326205 DOI: 10.3390/cells9041026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
11 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
12 Fogaça MV, Duman RS. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front Cell Neurosci 2019;13:87. [PMID: 30914923 DOI: 10.3389/fncel.2019.00087] [Cited by in Crossref: 143] [Cited by in F6Publishing: 148] [Article Influence: 47.7] [Reference Citation Analysis]
13 郭 沉. Effect of Somatostatin-Expressing Interneuron Deficits in Depression. AP 2019;09:1767-1777. [DOI: 10.12677/ap.2019.910214] [Reference Citation Analysis]
14 Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Gruca P, Pabian P, Szlachta M, Dziedzicka-Wasylewska M. Behavioral response to imipramine under chronic mild stress corresponds with increase of mRNA encoding somatostatin receptors sst2 and sst4 expression in medial habenular nucleus. Neurochem Int 2018;121:108-13. [PMID: 30291955 DOI: 10.1016/j.neuint.2018.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 McCullough KM, Daskalakis NP, Gafford G, Morrison FG, Ressler KJ. Cell-type-specific interrogation of CeA Drd2 neurons to identify targets for pharmacological modulation of fear extinction. Transl Psychiatry 2018;8:164. [PMID: 30135420 DOI: 10.1038/s41398-018-0190-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
16 Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Pabian P, Gruca P, Romańska I, Żurawek D, Szlachta M, Papp M, Antkiewicz-Michaluk L, Dziedzicka-Wasylewska M. Regulation of somatostatin receptor 2 in the context of antidepressant treatment response in chronic mild stress in rat. Psychopharmacology (Berl) 2018;235:2137-49. [PMID: 29713785 DOI: 10.1007/s00213-018-4912-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
17 Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018;17:1463-73. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
18 Kot M, Haduch A, Papp M, Daniel WA. The Effect of Chronic Treatment with Lurasidone on Rat Liver Cytochrome P450 Expression and Activity in the Chronic Mild Stress Model of Depression. Drug Metab Dispos 2017;45:1336-44. [DOI: 10.1124/dmd.117.077826] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
19 McLaughlin I, Dani JA, De Biasi M. The medial habenula and interpeduncular nucleus circuitry is critical in addiction, anxiety, and mood regulation. J Neurochem 2017;142 Suppl 2:130-43. [PMID: 28791703 DOI: 10.1111/jnc.14008] [Cited by in Crossref: 86] [Cited by in F6Publishing: 93] [Article Influence: 17.2] [Reference Citation Analysis]
20 Stengel A, Taché YF. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response. Front Neurosci 2017;11:231. [PMID: 28487631 DOI: 10.3389/fnins.2017.00231] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
21 Miao Z, Mao F, Liang J, Szyf M, Wang Y, Sun ZS. Anxiety-Related Behaviours Associated with microRNA-206-3p and BDNF Expression in Pregnant Female Mice Following Psychological Social Stress. Mol Neurobiol 2018;55:1097-111. [DOI: 10.1007/s12035-016-0378-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
22 Wisłowska-Stanek A, Lehner M, Skórzewska A, Krząścik P, Płaźnik A. Behavioral effects and CRF expression in brain structures of high- and low-anxiety rats after chronic restraint stress. Behav Brain Res 2016;310:26-35. [PMID: 27150225 DOI: 10.1016/j.bbr.2016.05.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]