BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Romanello V, Sandri M. The connection between the dynamic remodeling of the mitochondrial network and the regulation of muscle mass. Cell Mol Life Sci 2021;78:1305-28. [PMID: 33078210 DOI: 10.1007/s00018-020-03662-0] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Livshits G, Kalinkovich A. A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023;86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Reference Citation Analysis]
2 Li L, Huang T, Yang J, Yang P, Lan H, Liang J, Cai D, Zhong H, Jiao W, Song Y. PINK1/Parkin pathway-mediated mitophagy by AS-IV to explore the molecular mechanism of muscle cell damage. Biomed Pharmacother 2023;161:114533. [PMID: 36948131 DOI: 10.1016/j.biopha.2023.114533] [Reference Citation Analysis]
3 Rbbani G, Nedoluzhko A, Siriyappagouder P, Sharko F, Galindo-Villegas J, Raeymaekers JAM, Joshi R, Fernandes JMO. The novel circular RNA CircMef2c is positively associated with muscle growth in Nile tilapia. Genomics 2023;115:110598. [PMID: 36906188 DOI: 10.1016/j.ygeno.2023.110598] [Reference Citation Analysis]
4 Guan K, Li H, Liu D, Liu M, He C. Identification and antioxidative mechanism of novel mitochondria-targeted MFG-E8 polypeptides in virtual screening and in vitro study. J Dairy Sci 2023;106:1562-75. [PMID: 36710194 DOI: 10.3168/jds.2022-22745] [Reference Citation Analysis]
5 Uemichi K, Shirai T, Matsuno R, Iwata T, Tanimura R, Takemasa T. The role of the mechanistic target of rapamycin complex 1 in the regulation of mitochondrial adaptation during skeletal muscle atrophy under denervation or calorie restriction in mice. Appl Physiol Nutr Metab 2023;48:241-55. [PMID: 36786420 DOI: 10.1139/apnm-2022-0336] [Reference Citation Analysis]
6 Sun CC, Yang D, Chen ZL, Xiao JL, Xiao Q, Li CL, Zhou ZQ, Peng XY, Tang CF, Zheng L. Exercise intervention mitigates zebrafish age-related sarcopenia via alleviating mitochondrial dysfunction. FEBS J 2023;290:1519-30. [PMID: 36164851 DOI: 10.1111/febs.16637] [Reference Citation Analysis]
7 Chen L, Pan L, Zeng Y, Zhu X, You L. CPNE1 regulates myogenesis through the PERK-eIF2α pathway mediated by endoplasmic reticulum stress. Cell Tissue Res 2023;391:545-60. [PMID: 36525128 DOI: 10.1007/s00441-022-03720-y] [Reference Citation Analysis]
8 Chatzinikita E, Maridaki M, Palikaras K, Koutsilieris M, Philippou A. The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells 2023;12. [PMID: 36899852 DOI: 10.3390/cells12050716] [Reference Citation Analysis]
9 Wang J, Tierney L, Wilson C, Phillips V, Goldman L, Mumaw C, Muang E, Walker CL. Carboxyl-terminal modulator protein (CTMP) deficiency mitigates denervation-induced skeletal muscle atrophy. Biochem Biophys Res Commun 2023;644:155-61. [PMID: 36652767 DOI: 10.1016/j.bbrc.2023.01.023] [Reference Citation Analysis]
10 Kim JY, Kim HM, Kim JH, Guo S, Lee DH, Lim GM, Kim W, Kim CY. Salvia plebeia R.Br. and Rosmarinic Acid Attenuate Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes. Int J Mol Sci 2023;24. [PMID: 36768200 DOI: 10.3390/ijms24031876] [Reference Citation Analysis]
11 Yeon MH, Seo E, Lee JH, Jun HS. Bavachin and Corylifol A Improve Muscle Atrophy by Enhancing Mitochondria Quality Control in Type 2 Diabetic Mice. Antioxidants (Basel) 2023;12. [PMID: 36671000 DOI: 10.3390/antiox12010137] [Reference Citation Analysis]
12 Wang Z, Jin S, Xia T, Liu Y, Zhou Y, Liu X, Pan R, Liao Y, Yan M, Chang Q. Nelumbinis Stamen Ameliorates Chronic Restraint Stress-Induced Muscle Dysfunction and Fatigue in Mice by Decreasing Serum Corticosterone Levels and Activating Sestrin2. J Agric Food Chem 2022;70:16188-200. [PMID: 36529943 DOI: 10.1021/acs.jafc.2c06318] [Reference Citation Analysis]
13 Swalsingh G, Pani P, Bal NC. Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022;136:1851-71. [PMID: 36545931 DOI: 10.1042/CS20220636] [Reference Citation Analysis]
14 Englund DA, Jolliffe A, Aversa Z, Zhang X, Sturmlechner I, Sakamoto AE, Zeidler JD, Warner GM, McNinch C, White TA, Chini EN, Baker DJ, van Deursen JM, LeBrasseur NK. p21 induces a senescence program and skeletal muscle dysfunction. Mol Metab 2023;67:101652. [PMID: 36509362 DOI: 10.1016/j.molmet.2022.101652] [Reference Citation Analysis]
15 Dong Y, Ren C, Zhu M, Zhang D, Wang T, Zhang J, Wang J, Mao W, Long F. Targeting FGFRs for tumor therapy: current status and novel strategies. Future Med Chem 2022;14:1923-41. [PMID: 36449352 DOI: 10.4155/fmc-2022-0194] [Reference Citation Analysis]
16 Slavin MB, Kumari R, Hood DA. ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle. Mol Metab 2022;66:101623. [PMID: 36332794 DOI: 10.1016/j.molmet.2022.101623] [Reference Citation Analysis]
17 Kim J, Kim HM, Kim JH, Lee J, Zhang K, Guo S, Lee D, Gao EM, Son RH, Kim S, Kim CY. Preventive effects of the butanol fraction of Justicia procumbens L. against dexamethasone-induced muscle atrophy in C2C12 myotubes. Heliyon 2022. [DOI: 10.1016/j.heliyon.2022.e11597] [Reference Citation Analysis]
18 Yan Y, Li M, Lin J, Ji Y, Wang K, Yan D, Shen Y, Wang W, Huang Z, Jiang H, Sun H, Qi L. Adenosine monophosphate activated protein kinase contributes to skeletal muscle health through the control of mitochondrial function. Front Pharmacol 2022;13:947387. [DOI: 10.3389/fphar.2022.947387] [Reference Citation Analysis]
19 Noone J, O'Gorman DJ, Kenny HC. OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle. Trends Endocrinol Metab 2022;33:710-21. [PMID: 35945104 DOI: 10.1016/j.tem.2022.07.003] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022;12:888. [DOI: 10.3390/metabo12100888] [Reference Citation Analysis]
21 Liu X, Cheng C, Deng B, Liu M. Ellagic acid attenuates muscle atrophy in STZ-induced diabetic mice. Physiol Res 2022;71:631-41. [PMID: 36047725 DOI: 10.33549/physiolres.934918] [Reference Citation Analysis]
22 Gambarotto L, Metti S, Chrisam M, Cerqua C, Sabatelli P, Armani A, Zanon C, Spizzotin M, Castagnaro S, Strappazzon F, Grumati P, Cescon M, Braghetta P, Trevisson E, Cecconi F, Bonaldo P. Ambra1 deficiency impairs mitophagy in skeletal muscle. J Cachexia Sarcopenia Muscle 2022;13:2211-24. [PMID: 35593053 DOI: 10.1002/jcsm.13010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lin H, Ma X, Sun Y, Peng H, Wang Y, Thomas SS, Hu Z. Decoding the transcriptome of denervated muscle at single-nucleus resolution. J Cachexia Sarcopenia Muscle 2022;13:2102-17. [PMID: 35726356 DOI: 10.1002/jcsm.13023] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
24 Slavin MB, Kumari R, Hood DA. ATF5 is a regulator of exercise-induced mitochondrial quality control in skeletal muscle.. [DOI: 10.1101/2022.07.18.500448] [Reference Citation Analysis]
25 Sánchez-González C, Herrero Martín JC, Salegi Ansa B, Núñez de Arenas C, Stančič B, Pereira MP, Contreras L, Cuezva JM, Formentini L. Chronic inhibition of the mitochondrial ATP synthase in skeletal muscle triggers sarcoplasmic reticulum distress and tubular aggregates. Cell Death Dis 2022;13:561. [PMID: 35732639 DOI: 10.1038/s41419-022-05016-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022;54:102374. [PMID: 35738088 DOI: 10.1016/j.redox.2022.102374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Murgia M, Ciciliot S, Nagaraj N, Reggiani C, Schiaffino S, Franchi MV, Pišot R, Šimunič B, Toniolo L, Blaauw B, Sandri M, Biolo G, Flück M, Narici MV, Mann M. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. PNAS Nexus 2022;1:pgac086. [PMID: 36741463 DOI: 10.1093/pnasnexus/pgac086] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Taivassalo T, Hepple RT. Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Front Physiol 2022;13:861617. [DOI: 10.3389/fphys.2022.861617] [Reference Citation Analysis]
29 Adams V, Schauer A, Augstein A, Kirchhoff V, Draskowski R, Jannasch A, Goto K, Lyall G, Männel A, Barthel P, Mangner N, Winzer EB, Linke A, Labeit S. Targeting MuRF1 by small molecules in a HFpEF rat model improves myocardial diastolic function and skeletal muscle contractility. J Cachexia Sarcopenia Muscle 2022;13:1565-81. [PMID: 35301823 DOI: 10.1002/jcsm.12968] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
30 Jackson MJ, Pollock N, Staunton C, Jones S, McArdle A. Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022;11. [PMID: 35626735 DOI: 10.3390/cells11101698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Wongkitikamjorn W, Hosomichi J, Wada E, Maeda H, Satrawaha S, Hong H, Hayashi YK, Yoshida K, Ono T. Gestational Intermittent Hypoxia Induces Mitochondrial Impairment in the Geniohyoid Muscle of Offspring Rats. Cureus 2022. [DOI: 10.7759/cureus.25088] [Reference Citation Analysis]
32 Sharlo KA, Lvova ID, Shenkman BS. Interaction of Oxidative Metabolism and Epigenetic Regulation of Gene Expression under Muscle Functional Unloading. J Evol Biochem Phys 2022;58:625-643. [DOI: 10.1134/s0022093022030012] [Reference Citation Analysis]
33 Jo AL, Han JW, An JI, Cho K, Jeoung NH. Cuban Policosanol Prevents the Apoptosis and the Mitochondrial Dysfunction Induced by Lipopolysaccharide in C2C12 Myoblast via Activation of Akt and Erk Pathways. J Nutr Sci Vitaminol 2022;68:79-86. [DOI: 10.3177/jnsv.68.79] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022;13:859723. [PMID: 35370668 DOI: 10.3389/fphar.2022.859723] [Reference Citation Analysis]
35 He ZZ, Zhao T, Qimuge N, Tian T, Yan W, Yi X, Jin J, Cai R, Yu T, Yang G, Pang W. COPS3 AS lncRNA enhances myogenic differentiation and maintains fast-type myotube phenotype. Cellular Signalling 2022. [DOI: 10.1016/j.cellsig.2022.110341] [Reference Citation Analysis]
36 Slavin MB, Memme JM, Oliveira AN, Moradi N, Hood DA. Regulatory networks controlling mitochondrial quality control in skeletal muscle. Am J Physiol Cell Physiol 2022. [PMID: 35353634 DOI: 10.1152/ajpcell.00065.2022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
37 Wang XH, Mitch WE, Price SR. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat Rev Nephrol 2022;18:138-52. [PMID: 34750550 DOI: 10.1038/s41581-021-00498-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
38 Cheng Z. FoxO transcription factors in mitochondrial homeostasis. Biochem J 2022;479:525-36. [PMID: 35195252 DOI: 10.1042/BCJ20210777] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022;132:388-401. [PMID: 34941442 DOI: 10.1152/japplphysiol.00746.2021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
40 Soares MN, Eggelbusch M, Naddaf E, Gerrits KHL, van der Schaaf M, van den Borst B, Wiersinga WJ, van Vugt M, Weijs PJM, Murray AJ, Wüst RCI. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022;13:11-22. [PMID: 34997689 DOI: 10.1002/jcsm.12896] [Cited by in Crossref: 56] [Cited by in F6Publishing: 28] [Article Influence: 56.0] [Reference Citation Analysis]
41 Fairman CM, Lønbro S, Cardaci TD, Vanderveen BN, Nilsen TS, Murphy AE. Muscle wasting in cancer: opportunities and challenges for exercise in clinical cancer trials. JCSM Rapid Communications 2022;5:52-67. [DOI: 10.1002/rco2.56] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021;11:769036. [PMID: 34868997 DOI: 10.3389/fonc.2021.769036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021;11:1633. [PMID: 34827632 DOI: 10.3390/biom11111633] [Reference Citation Analysis]
44 Lin H, Ma X, Sun Y, Peng H, Wang Y, Thomas SS, Hu Z. Decoding the transcriptome of denervated muscle at single-nucleus resolution.. [DOI: 10.1101/2021.10.25.463678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Neurohr JM, Paulson ET, Kinsey ST. A higher mitochondrial content is associated with greater oxidative damage, oxidative defenses, protein synthesis and ATP turnover in resting skeletal muscle. J Exp Biol 2021;224:jeb242462. [PMID: 34581401 DOI: 10.1242/jeb.242462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
46 Singlár Z, Szentesi P, Fodor J, Angyal Á, Csernoch L, Sztretye M. Assessing the Potential of Nutraceuticals as Geroprotectors on Muscle Performance and Cognition in Aging Mice. Antioxidants (Basel) 2021;10:1415. [PMID: 34573047 DOI: 10.3390/antiox10091415] [Reference Citation Analysis]
47 Mao X, Gu Y, Sui X, Shen L, Han J, Wang H, Xi Q, Zhuang Q, Meng Q, Wu G. Phosphorylation of Dynamin-Related Protein 1 (DRP1) Regulates Mitochondrial Dynamics and Skeletal Muscle Wasting in Cancer Cachexia. Front Cell Dev Biol 2021;9:673618. [PMID: 34422804 DOI: 10.3389/fcell.2021.673618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
48 Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021;12:704290. [PMID: 34408664 DOI: 10.3389/fphys.2021.704290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021;22:6479. [PMID: 34204228 DOI: 10.3390/ijms22126479] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
50 Triolo M, Hood DA. Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells 2021;10:1054. [PMID: 33946883 DOI: 10.3390/cells10051054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
51 Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021;10:588. [PMID: 33920468 DOI: 10.3390/antiox10040588] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
52 Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS. Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 2021;6:17. [PMID: 33772028 DOI: 10.1038/s41536-021-00127-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
53 Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021;78:4653-75. [PMID: 33751143 DOI: 10.1007/s00018-021-03807-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
54 Kim KW, Baek MO, Yoon MS, Son KH. Deterioration of mitochondrial function in the human intercostal muscles differs among individuals with sarcopenia, obesity, and sarcopenic obesity. Clin Nutr 2021;40:2697-706. [PMID: 33933735 DOI: 10.1016/j.clnu.2021.03.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
55 Goodman CA, Davey JR, Hagg A, Parker BL, Gregorevic P. Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Mol Cell Proteomics 2021;20:100050. [PMID: 33516941 DOI: 10.1016/j.mcpro.2021.100050] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
56 Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021;10:E61. [PMID: 33401549 DOI: 10.3390/cells10010061] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
57 Fan J, Mo X, Zou K, Chen N. Exercise-Induced Autophagy in the Prevention and Treatment of Sarcopenia. Exercise, Autophagy and Chronic Diseases 2021. [DOI: 10.1007/978-981-16-4525-9_10] [Reference Citation Analysis]
58 Romanello V. The Interplay between Mitochondrial Morphology and Myomitokines in Aging Sarcopenia. Int J Mol Sci 2020;22:E91. [PMID: 33374852 DOI: 10.3390/ijms22010091] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]