BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang J, Zheng B, Yang S, Tang X, Wang J, Wei D. The protective effects of phoenixin-14 against lipopolysaccharide-induced inflammation and inflammasome activation in astrocytes. Inflamm Res 2020;69:779-87. [DOI: 10.1007/s00011-020-01355-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Skrzypczak-wiercioch A, Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022;27:5481. [DOI: 10.3390/molecules27175481] [Reference Citation Analysis]
2 Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022;9:956500. [DOI: 10.3389/fmolb.2022.956500] [Reference Citation Analysis]
3 Ling C, Yang Y, Hu X, Cai M, Wang H, Chen C. Phoenixin-14 alleviates inflammatory smooth muscle cell-induced endothelial cell dysfunction in vitro. Cytokine 2022;157:155973. [PMID: 35907364 DOI: 10.1016/j.cyto.2022.155973] [Reference Citation Analysis]
4 Akdu S, Can U, Polat E. Investigation of serum phoenixin levels in patients with hypertension. Rev Assoc Med Bras (1992) 2022;68:814-9. [PMID: 35766697 DOI: 10.1590/1806-9282.20220153] [Reference Citation Analysis]
5 Mata-martínez E, Díaz-muñoz M, Vázquez-cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022;16:929529. [DOI: 10.3389/fncel.2022.929529] [Reference Citation Analysis]
6 Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, Dimaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022;12. [DOI: 10.1038/s41598-022-13695-z] [Reference Citation Analysis]
7 Bayrak A, Hanson J, Laufer S, Pillaiyar T. Super-conserved receptors expressed in the brain: biology and medicinal chemistry efforts. Future Med Chem 2022. [PMID: 35535715 DOI: 10.4155/fmc-2022-0006] [Reference Citation Analysis]
8 Yamawaki Y, Kimura H, Nagata S, Ozawa K, Hosoi T. Peripheral Immune Activation in Mice Elicits Unfolded Protein Responses Independent on MyD88 Pathway in the Liver but not the Hypothalamus and Hippocampus. Front Physiol 2022;13:854538. [DOI: 10.3389/fphys.2022.854538] [Reference Citation Analysis]
9 Hu Y, Shen X, Liu F, Zhu W. Phoenixin-14 Ameliorates Cellular Senescence Against Morphine in M17 Neuronal Cells. Neurotox Res 2022. [PMID: 35298792 DOI: 10.1007/s12640-022-00489-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Friedrich T, Schalla MA, Goebel-stengel M, Kobelt P, Rose M, Stengel A. Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sciences 2022;12:135. [DOI: 10.3390/brainsci12020135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zandeh-Rahimi Y, Panahi N, Hesaraki S, Shirazi-Beheshtiha SH. Protective Effects of Phoenixin-14 Peptide in the Indomethacin-Induced Duodenal Ulcer: An Experimental Study. Int J Pept Res Ther 2022;28:43. [PMID: 35002587 DOI: 10.1007/s10989-021-10314-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yu Z, Wu H, Wang Y. Phoenixin-14 Promotes the Recovery of Neurological Dysfunction After Spinal Cord Injury by Regulating Microglial Polarization via PTEN/Akt Signaling Pathway. Hum Exp Toxicol 2022;41:9603271221111345. [PMID: 35968813 DOI: 10.1177/09603271221111345] [Reference Citation Analysis]
13 Mcilwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. Journal of the Endocrine Society 2022;6:bvab192. [DOI: 10.1210/jendso/bvab192] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Friedrich T, Stengel A. Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021;22:9156. [PMID: 34502065 DOI: 10.3390/ijms22179156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Ling C, Hu X, Luo L, Liang C, Wang H, Chen C. Phoenixin-14 regulates proliferation and apoptosis of vascular smooth muscle cells by modulation of KCNQ1OT1/miR-183-3p/CTNNB1 axis. Environ Toxicol Pharmacol 2021;86:103655. [PMID: 33823298 DOI: 10.1016/j.etap.2021.103655] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
16 Wu J, Sun J, Meng X. Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases. Pharmacol Res 2021;165:105408. [PMID: 33412278 DOI: 10.1016/j.phrs.2020.105408] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Miyazaki I, Asanuma M. Neuron-Astrocyte Interactions in Parkinson's Disease. Cells 2020;9:E2623. [PMID: 33297340 DOI: 10.3390/cells9122623] [Cited by in Crossref: 8] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
18 Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020;21:E8378. [PMID: 33171667 DOI: 10.3390/ijms21218378] [Cited by in F6Publishing: 11] [Reference Citation Analysis]