BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. Wiley Interdiscip Rev RNA 2020;11:e1576. [PMID: 31694072 DOI: 10.1002/wrna.1576] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Depaix A, Grudzien-nogalska E, Fedorczyk B, Kiledjian M, Jemielity J, Kowalska J. Preparation of RNAs with non-canonical 5′ ends using novel di- and trinucleotide reagents for co-transcriptional capping. Front Mol Biosci 2022;9:854170. [DOI: 10.3389/fmolb.2022.854170] [Reference Citation Analysis]
2 Meynier V, Iannazzo L, Catala M, Oerum S, Braud E, Atdjian C, Barraud P, Fonvielle M, Tisné C, Ethève-Quelquejeu M. Synthesis of RNA-cofactor conjugates and structural exploration of RNA recognition by an m6A RNA methyltransferase. Nucleic Acids Res 2022:gkac354. [PMID: 35580049 DOI: 10.1093/nar/gkac354] [Reference Citation Analysis]
3 Izadpanah A, Rappaport J, Datta PK. Epitranscriptomics of SARS-CoV-2 Infection. Front Cell Dev Biol 2022;10:849298. [DOI: 10.3389/fcell.2022.849298] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Front Microbiol 2022;13:845625. [PMID: 35185855 DOI: 10.3389/fmicb.2022.845625] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
5 Baddock HT, Brolih S, Yosaatmadja Y, Ratnaweera M, Bielinski M, Swift LP, Cruz-Migoni A, Fan H, Keown JR, Walker AP, Morris GM, Grimes JM, Fodor E, Schofield CJ, Gileadi O, McHugh PJ. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Res 2022:gkab1303. [PMID: 35037045 DOI: 10.1093/nar/gkab1303] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
6 Javaran VJ, Moffett P, Lemoyne P, Xu D, Adkar-Purushothama CR, Fall ML. Grapevine Virology in the Third-Generation Sequencing Era: From Virus Detection to Viral Epitranscriptomics. Plants (Basel) 2021;10:2355. [PMID: 34834718 DOI: 10.3390/plants10112355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Ferron F, Sama B, Decroly E, Canard B. The enzymes for genome size increase and maintenance of large (+)RNA viruses. Trends Biochem Sci 2021:S0968-0004(21)00109-2. [PMID: 34172362 DOI: 10.1016/j.tibs.2021.05.006] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
8 Baquero-Perez B, Geers D, Díez J. From A to m6A: The Emerging Viral Epitranscriptome. Viruses 2021;13:1049. [PMID: 34205979 DOI: 10.3390/v13061049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang T, Yang Y, Xiang Z, Gao CC, Wang W, Wang C, Xiao X, Wang X, Qiu WN, Li WJ, Ren L, Li M, Zhao YL, Chen YS, Wang J, Yang YG. N6-methyladenosine regulates RNA abundance of SARS-CoV-2. Cell Discov 2021;7:7. [PMID: 33510134 DOI: 10.1038/s41421-020-00241-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Paramasivam A. RNA 2'-O-methylation modification and its implication in COVID-19 immunity. Cell Death Discov 2020;6:118. [PMID: 33298836 DOI: 10.1038/s41420-020-00358-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
11 Jiang Y, Liu L, Manning M, Bonahoom M, Lotvola A, Yang Z, Yang ZQ. Structural analysis, virtual screening and molecular simulation to identify potential inhibitors targeting 2'-O-ribose methyltransferase of SARS-CoV-2 coronavirus. J Biomol Struct Dyn 2020;:1-16. [PMID: 33016237 DOI: 10.1080/07391102.2020.1828172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
12 Potužník JF, Cahová H. It's the Little Things (in Viral RNA). mBio 2020;11:e02131-20. [PMID: 32934087 DOI: 10.1128/mBio.02131-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020;54:309-36. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
14 Wang P, Wu M, Tu Z, Tao C, Hu Q, Li K, Zhu X, Huang K. Identification of RNA: 5-Methylcytosine Methyltransferases-Related Signature for Predicting Prognosis in Glioma. Front Oncol 2020;10:1119. [PMID: 32974125 DOI: 10.3389/fonc.2020.01119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
15 Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. Wiley Interdiscip Rev RNA 2021;12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
16 Netzband R, Pager CT. Epitranscriptomic marks: Emerging modulators of RNA virus gene expression. Wiley Interdiscip Rev RNA 2020;11:e1576. [PMID: 31694072 DOI: 10.1002/wrna.1576] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]