BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. Small 2021;:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Cited by in Crossref: 35] [Cited by in F6Publishing: 43] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Yang L, Wang Z, Gong H, Gai S, Shen R. Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy. J Colloid Interface Sci 2023;634:495-508. [PMID: 36542978 DOI: 10.1016/j.jcis.2022.12.015] [Reference Citation Analysis]
2 Duan J, Liao T, Xu X, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO(2) nanoparticles with a "dynamic protection" property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2023;634:836-51. [PMID: 36565625 DOI: 10.1016/j.jcis.2022.12.088] [Reference Citation Analysis]
3 Wang L, Chen L, Zhao X, Lv Y, Liu T, Yan X. Infection Microenvironment-Mediated Nanoplatform for In Vivo Persistent Luminescence Imaging and Chemodynamic Antibacterial Therapy. ACS Appl Nano Mater 2023. [DOI: 10.1021/acsanm.3c00101] [Reference Citation Analysis]
4 Chen Q, Li C, Wang Q. Multifunctional Nano-Biomaterials for Cancer Therapy via Inducing Enhanced Immunogenic Cell Death. Small Methods 2023;:e2201457. [PMID: 36703555 DOI: 10.1002/smtd.202201457] [Reference Citation Analysis]
5 Liu J, Yang W, Huang Y, Li J, Zhu C, Pu G, Wang B, Gui X, Chu M. Oxygen and hydrogen peroxide self-supplying magnetic nanoenzymes for cancer therapy through magneto-mechanical force, force-induced reactive oxygen species, chemodynamic effects, and cytotoxicity of Ca2+ ions. Nano Res 2023. [DOI: 10.1007/s12274-022-5303-5] [Reference Citation Analysis]
6 Wu J, Liu Y, Cao M, Zheng N, Ma H, Ye X, Yang N, Liu Z, Liao W, Sun L. Cancer-Responsive Multifunctional Nanoplatform Based on Peptide Self-Assembly for Highly Efficient Combined Cancer Therapy by Alleviating Hypoxia and Improving the Immunosuppressive Microenvironment. ACS Appl Mater Interfaces 2023. [PMID: 36651290 DOI: 10.1021/acsami.2c20388] [Reference Citation Analysis]
7 Meng Y, Zhang D, Song Y, Yang X, Gao Y, Ma J, Hu Z, Zheng X. Precisely designed Fe(x) (x = 1-2) cluster nanocatalysts for effective nanocatalytic tumor therapy. Nanoscale 2023. [PMID: 36636960 DOI: 10.1039/d2nr05869c] [Reference Citation Analysis]
8 Gao X, Feng J, Lv K, Zhou Y, Zhang R, Song S, Zhang H, Wang D. Engineering CeO2/CuO heterostructure anchored on upconversion nanoparticles with boosting ROS generation-primed apoptosis-ferroptosis for cancer dynamic therapy. Nano Res 2023. [DOI: 10.1007/s12274-022-5223-4] [Reference Citation Analysis]
9 Qian G, Wang J, Yang L, Zeng Z, Zhao Z, Peng S, Shuai C. A pH-responsive CaO2@ZIF-67 system endows a scaffold with chemodynamic therapy properties. J Mater Sci 2023. [DOI: 10.1007/s10853-022-08103-w] [Reference Citation Analysis]
10 Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023;59:102601. [PMID: 36630819 DOI: 10.1016/j.redox.2023.102601] [Reference Citation Analysis]
11 Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Reference Citation Analysis]
12 Du J, Sun J, Liu X, Wu Q, Shen W, Gao Y, Liu Y, Wu C. Preparation of C6 cell membrane-coated doxorubicin conjugated manganese dioxide nanoparticles and its targeted therapy application in glioma. Eur J Pharm Sci 2023;180:106338. [PMID: 36410571 DOI: 10.1016/j.ejps.2022.106338] [Reference Citation Analysis]
13 Cao L, Feng Z, Guo R, Tian Q, Wang W, Rong X, Zhou M, Cheng C, Ma T, Deng D. The direct catalytic synthesis of ultrasmall Cu2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy. Mater Horiz 2023. [DOI: 10.1039/d2mh01540d] [Reference Citation Analysis]
14 sedighi M, Mahmoudi Z, Abbaszadeh S, Eskandari MR, Sefat F. Nanomedicines for Hepatocellular Carcinoma Therapy: Challenges and Clinical Applications. Materials Today Communications 2023. [DOI: 10.1016/j.mtcomm.2022.105242] [Reference Citation Analysis]
15 Huo S, Lyu Z, Su X, Wang F, Liu J, Liu S, Liu X, Bao X, Zhang J, Zheng K, Xu G. Formation of a novel Cu-containing bioactive glass nano-topography coating with strong bactericidal capability and bone regeneration. Composites Part B: Engineering 2023. [DOI: 10.1016/j.compositesb.2023.110521] [Reference Citation Analysis]
16 Liu S, Zhang T, Li S, Wu Q, Wang K, Xu X, Lu M, Shao R, Zhao W, Liu H. Biomimetic Nanobomb for Synergistic Therapy with Inhibition of Cancer Stem Cells. Small 2023;:e2206503. [PMID: 36587973 DOI: 10.1002/smll.202206503] [Reference Citation Analysis]
17 Wang Q, Shaik F, Lu X, Zhang W, Wu Y, Qian H, Zhang W. Amorphous NiB@IrO(x) nanozymes trigger efficient apoptosis-ferroptosis hybrid therapy. Acta Biomater 2023;155:575-87. [PMID: 36374661 DOI: 10.1016/j.actbio.2022.10.048] [Reference Citation Analysis]
18 Li J, Yi W, Luo Y, Yang K, He L, Xu C, Deng L, He D. GSH-depleting and H(2)O(2)-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysis. Acta Biomater 2023;155:588-600. [PMID: 36328125 DOI: 10.1016/j.actbio.2022.10.050] [Reference Citation Analysis]
19 Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine 2023. [DOI: 10.1007/978-981-16-8984-0_11] [Reference Citation Analysis]
20 Wang Y, Wu M, Wang X, Wang P, Ning Z, Zeng Y, Liu X, Sun H, Zheng A. Biodegradable MnO(2)-based gene-engineered nanocomposites for chemodynamic therapy and enhanced antitumor immunity. Mater Today Bio 2023;18:100531. [PMID: 36619204 DOI: 10.1016/j.mtbio.2022.100531] [Reference Citation Analysis]
21 Hu H, Li R, Huang P, Mo Z, Xu Q, Hu T, Yao S, Dai X, Xu Z. BSA-coated β-FeOOH nanoparticles efficiently deliver the photosensitizer chlorin e6 for synergistic anticancer PDT/CDT. Colloids Surf B Biointerfaces 2022;222:113117. [PMID: 36586238 DOI: 10.1016/j.colsurfb.2022.113117] [Reference Citation Analysis]
22 Ojha A, Jaiswal S, Bharti P, Mishra SK. Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers (Basel) 2022;15. [PMID: 36612158 DOI: 10.3390/cancers15010162] [Reference Citation Analysis]
23 Liang M, Shang L, Yu Y, Jiang Y, Bai Q, Ma J, Yang D, Sui N, Zhu Z. Ultrasound activatable microneedles for bilaterally augmented sono-chemodynamic and sonothermal antibacterial therapy. Acta Biomater 2022:S1742-7061(22)00851-0. [PMID: 36572249 DOI: 10.1016/j.actbio.2022.12.041] [Reference Citation Analysis]
24 Wu X, Yu F, Han Y, Jiang L, Li Z, Zhu J, Xu Q, Tedesco AC, Zhang J, Bi H. Enhanced chemodynamic and photoluminescence efficiencies of Fe-O(4) coordinated carbon dots via the core-shell synergistic effect. Nanoscale 2022;15:376-86. [PMID: 36511884 DOI: 10.1039/d2nr05281d] [Reference Citation Analysis]
25 Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022;2022:5041399. [PMID: 36568636 DOI: 10.1155/2022/5041399] [Reference Citation Analysis]
26 Chu X, Zhang L, Li Y, He Y, Zhang Y, Du C. NIR Responsive Doxorubicin‐Loaded Hollow Copper Ferrite @ Polydopamine for Synergistic Chemodynamic/Photothermal/Chemo‐Therapy. Small 2022. [DOI: 10.1002/smll.202205414] [Reference Citation Analysis]
27 Yu Y, Zhao W, Yuan X, Li R. Progress and prospects of nanozymes for enhanced antitumor therapy. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1090795] [Reference Citation Analysis]
28 Yan M, Qi X, Xie W, Xiao J, Gan Y, Wang P, Zhang C, Xu Z, Zhang J, Tian G, Wu Z, Zhang G. PDGF receptor-β-targeted copper-gadolinium-oxide self-assembled nanoclusters suppress tumor growth and metastasis via copper overload-mediated apoptosis and anti-angiogenesis. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141227] [Reference Citation Analysis]
29 Wei G, Lian X, Qin X, Zhao Y, Cai L, Chen Q, Zou J, Tian J. Core-satellite porphyrinic MOF@CuS nanoconstructs for combined chemodynamic/photodynamic/photothermal therapy. Materials & Design 2022;224:111302. [DOI: 10.1016/j.matdes.2022.111302] [Reference Citation Analysis]
30 Zhu L, You Y, Zhu M, Song Y, Zhang J, Hu J, Xu X, Xu X, Du Y, Ji J. Ferritin-Hijacking Nanoparticles Spatiotemporally Directing Endogenous Ferroptosis for Synergistic Anticancer Therapy. Adv Mater 2022;34:e2207174. [PMID: 36210735 DOI: 10.1002/adma.202207174] [Reference Citation Analysis]
31 Poudel K, Nam KS, Lim J, Ku SK, Hwang J, Kim JO, Byeon JH. Modified Aerotaxy for the Plug-in Manufacture of Cell-Penetrating Fenton Nanoagents for Reinforcing Chemodynamic Cancer Therapy. ACS Nano 2022;16:19423-38. [PMID: 36255335 DOI: 10.1021/acsnano.2c09136] [Reference Citation Analysis]
32 You S, He L, Zhou J, Shu T, Wang Y, Li L. Controllable Synthesis of Cobalt doped Prussian Blue Nanoparticles for Photothermal-enhanced Fenton Reaction. Materials Letters 2022. [DOI: 10.1016/j.matlet.2022.133439] [Reference Citation Analysis]
33 Zhang S, Li Z, Xu Z, Tang Y, Duan C, Dai H, Dai X, Wei X, Liu Y, Xu C, Han B. Reactive oxygen species-based nanotherapeutics for head and neck squamous cell carcinoma. Materials & Design 2022;223:111194. [DOI: 10.1016/j.matdes.2022.111194] [Reference Citation Analysis]
34 Du P, An R, Liang Y, Lei P, Zhang H. Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews 2022;471:214745. [DOI: 10.1016/j.ccr.2022.214745] [Reference Citation Analysis]
35 Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z, Xu Z. New anti-cancer explorations based on metal ions. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01661-w] [Reference Citation Analysis]
36 Li Z, Zhang S, Liu M, Zhong T, Li H, Wang J, Zhao H, Tian Y, Wang H, Wang J, Xu M, Wang S, Zhang X. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol Pharm 2022. [PMID: 36223494 DOI: 10.1021/acs.molpharmaceut.2c00553] [Reference Citation Analysis]
37 An D, Wu X, Gong Y, Li W, Dai G, Lu X, Yu L, Ren WX, Qiu M, Shu J. Manganese-functionalized MXene theranostic nanoplatform for MRI-guided synergetic photothermal/chemodynamic therapy of cancer. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0533] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Sun G, Jiang X, Liu C, Song S, Zhang J, Shen J. FeS@LAB-35@Ti3C2 as a high-efficiency nanozyme for near infrared light induced photothermal enhanced chemodynamic antibacterial activity and wound healing. Nano Res . [DOI: 10.1007/s12274-022-4965-3] [Reference Citation Analysis]
39 Nie Y, Zhang W, Xiao W, Zeng W, Chen T, Huang W, Wu X, Kang Y, Dong J, Luo W, Ji X. Novel biodegradable two-dimensional vanadene augmented photoelectro-fenton process for cancer catalytic therapy. Biomaterials 2022;289:121791. [DOI: 10.1016/j.biomaterials.2022.121791] [Reference Citation Analysis]
40 Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. Journal of Solid State Chemistry 2022;314:123352. [DOI: 10.1016/j.jssc.2022.123352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
41 Chen C, Tan Y, Xu T, Sun Y, Zhao S, Ouyang Y, Chen Y, He L, Liu X, Liu H. Sorafenib-Loaded Copper Peroxide Nanoparticles with Redox Balance Disrupting Capacity for Enhanced Chemodynamic Therapy against Tumor Cells. Langmuir 2022. [PMID: 36154182 DOI: 10.1021/acs.langmuir.2c01938] [Reference Citation Analysis]
42 Yang W, Yue H, Lu G, Wang W, Deng Y, Ma G, Wei W. Advances in Delivering Oxidative Modulators for Disease Therapy. Research 2022;2022:1-24. [DOI: 10.34133/2022/9897464] [Reference Citation Analysis]
43 Al-zahrani FAM, Salem SS, Al-ghamdi HA, Nhari LM, Lin L, El-shishtawy RM. Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering 2022;9:452. [DOI: 10.3390/bioengineering9090452] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
44 Fu J, Zhou Y, Liu T, Wang W, Zhao Y, Sun Y, Zhang Y, Qin W, Chen Z, Lu C, Quan G, Wu C, Pan X. A triple-enhanced chemodynamic approach based on glucose-powered hybrid nanoreactors for effective bacteria killing. Nano Res . [DOI: 10.1007/s12274-022-4854-9] [Reference Citation Analysis]
45 Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm 2022;3. [DOI: 10.1002/mco2.163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Luo S, Qin S, Oudeng G, Zhang L. Iron-Based Hollow Nanoplatforms for Cancer Imaging and Theranostics. Nanomaterials 2022;12:3023. [DOI: 10.3390/nano12173023] [Reference Citation Analysis]
47 Chen F, Zhang X, Wang Z, Xu C, Hu J, Liu L, Zhou J, Sun B. Dual-responsive and NIR-driven free radical nanoamplifier with glutathione depletion for enhanced tumor-specific photothermal/thermodynamic/chemodynamic synergistic Therapy. Biomater Sci 2022. [PMID: 36040793 DOI: 10.1039/d2bm01025a] [Reference Citation Analysis]
48 Huang Y, Guan Z, Ren L, Luo Y, Chen M, Sun Y, He Y, Zeng Z, Dai X, Jiang J, Huang Z, Zhao C. Bortezomib prodrug catalytic nanoreactor for chemo/chemodynamic therapy and macrophage re-education. J Control Release 2022;350:332-49. [PMID: 36028045 DOI: 10.1016/j.jconrel.2022.08.037] [Reference Citation Analysis]
49 Li Y, Yang K, Wang Z, Xiao J, Tang Z, Li H, Yi W, Li Z, Luo Y, Li J, Zhou X, Deng L, He D. Rapid In Situ Deposition of Iron-Chelated Polydopamine Coating on the Polyacrylamide Hydrogel Dressings for Combined Photothermal and Chemodynamic Therapy of Skin Wound Infection. ACS Appl Bio Mater 2022. [PMID: 35994754 DOI: 10.1021/acsabm.2c00602] [Reference Citation Analysis]
50 Ma J, Peng X, Zhou Z, Yang H, Wu K, Fang Z, Han D, Fang Y, Liu S, Shen Y, Zhang Y. Extended Conjugation Tuning Carbon Nitride for Non-sacrificial H2 O2 Photosynthesis and Hypoxic Tumor Therapy. Angew Chem Int Ed Engl 2022;:e202210856. [PMID: 35939064 DOI: 10.1002/anie.202210856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Wang J, Kong W, Jin H, Li C, Luo Q, Luo Y, Yuan C, Lu J, Zhang L, Liu X. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112750] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Zeng X, Ruan Y, Chen Q, Yan S, Huang W. Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138422] [Reference Citation Analysis]
53 Tang S, Zhou L, He H, Cui L, Ren Z, Tai Y, Xie Z, Cao Y, Meng D, Liu Q, Wu Y, Jiang J, Zhou X. MnO2-melittin nanoparticles serve as an effective anti-tumor immunotherapy by enhancing systemic immune response. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Xu B, Niu R, Tang Y, Wang C, Jin L, Wang Y. A Cu-based nanoplatform for near-infrared light amplified multi-mode prostate cancer specific therapy. J Mater Chem B 2022. [PMID: 35894661 DOI: 10.1039/d2tb01109c] [Reference Citation Analysis]
55 Yang F, Fang W, Yang M, Chen W, Xu J, Wang J, Li W, Zhao B, Qiu L, Chen J. Enzyme-loaded glycogen nanoparticles with tumor-targeting Activatable host-guest supramolecule for augmented chemodynamic therapy. Int J Biol Macromol 2022:S0141-8130(22)01615-4. [PMID: 35907454 DOI: 10.1016/j.ijbiomac.2022.07.183] [Reference Citation Analysis]
56 Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Reference Citation Analysis]
57 Li B, Li J, Fu Y, Ye X, Xie M, Feng L, Niu X, You Z. Ultra-homogeneous Cu2−xSe nanoparticles as near-infrared II plasmonic phototheranstics for photothermal/chemodynamic synergistic therapy of liver cancer. Particuology 2022. [DOI: 10.1016/j.partic.2022.07.004] [Reference Citation Analysis]
58 Chen W, Liu J, Zheng C, Bai Q, Gao Q, Zhang Y, Dong K, Lu T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int J Nanomedicine 2022;17:2611-28. [PMID: 35712639 DOI: 10.2147/IJN.S366187] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Zhao X, He X, Hou A, Cheng C, Wang X, Yue Y, Wu Z, Wu H, Liu B, Li H, Shen J, Tan C, Zhou Z, Ma L. Growth of Cu2O Nanoparticles on Two-Dimensional Zr-Ferrocene-Metal-Organic Framework Nanosheets for Photothermally Enhanced Chemodynamic Antibacterial Therapy. Inorg Chem 2022;61:9328-38. [PMID: 35666261 DOI: 10.1021/acs.inorgchem.2c01091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
60 Chen T, Zeng W, Liu Y, Yu M, Huang C, Shi Z, Lin C, Tang J, Mei L, Wu M. Cu-Doped Polypyrrole with Multi-Catalytic Activities for Sono-Enhanced Nanocatalytic Tumor Therapy. Small 2022;:e2202964. [PMID: 35717674 DOI: 10.1002/smll.202202964] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Xiang Y, Li N, Liu M, Chen Q, Long X, Yang Y, Xiao Z, Huang J, Wang X, Yang Y, Zhang J, Liu C, Huang Q. Nanodrugs Detonate Lysosome Bombs. Front Pharmacol 2022;13:909504. [PMID: 35656308 DOI: 10.3389/fphar.2022.909504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Li Z, Wu H, Zhu J, Sun L, Tong X, Huang D, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. Small Science. [DOI: 10.1002/smsc.202200024] [Reference Citation Analysis]
63 Yang J, Yang L, Li Q, Zhang L. Ferrocene-based multifunctional nanoparticles for combined chemo/chemodynamic/photothermal therapy. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.06.117] [Reference Citation Analysis]
64 Wang X, Wang S, Gao J, Yao S, Xu T, Zhao Y, Zhang Z, Huang T, Yan S, Li L. Metformin capped Cu2(OH)3Cl nanosheets for chemodynamic wound disinfection. Nano Res . [DOI: 10.1007/s12274-022-4457-5] [Reference Citation Analysis]
65 Shi X, Shen T, Zhang A, Tan L, Shen W, Zhong H, Zhang S, Gu Y, Shen L. Rational Design of a Gd(III)–Cu(II) Nanobooster for Chemodynamic Therapy Against Cancer Cells. Front Chem 2022;10:856495. [DOI: 10.3389/fchem.2022.856495] [Reference Citation Analysis]
66 Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022;2:20210238. [DOI: 10.1002/exp.20210238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
67 Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS Appl Bio Mater 2022. [PMID: 35319859 DOI: 10.1021/acsabm.2c00138] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
68 Bai Y, Zhao J, Zhang L, Wang S, Hua J, Zhao S, Liang H. A Smart Near-Infrared Carbon Dot-Metal Organic Framework Assemblies for Tumor Microenvironment-Activated Cancer Imaging and Chemodynamic-Photothermal Combined Therapy. Adv Healthc Mater 2022;:e2102759. [PMID: 35170255 DOI: 10.1002/adhm.202102759] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
69 Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine 2022. [DOI: 10.1007/978-981-13-9374-7_11-1] [Reference Citation Analysis]
70 Dai X, Li Y, Liu X, Lei Z, Yang L, Xu Q, Gao F. Biodegradable Fe(ii)/Fe(iii)-coordination-driven nanoassemblies for chemo/photothermal/chemodynamic synergistic therapy of bacterial infection. New J Chem 2022;46:20193-20203. [DOI: 10.1039/d2nj03803j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]