1 |
Cao C, Lu X, Guo X, Zhao H, Gao Y. Patient-derived models: Promising tools for accelerating the clinical translation of breast cancer research findings. Exp Cell Res 2023;425:113538. [PMID: 36871856 DOI: 10.1016/j.yexcr.2023.113538] [Reference Citation Analysis]
|
2 |
Yuan P, Chen X, Li X, Zong X, Yang C, Li Y, Xue W, Dai J. Effect of Cell Membrane-cloaked Nanoparticle Elasticity on Nano-Bio Interaction. Small Methods 2023;:e2201548. [PMID: 36914575 DOI: 10.1002/smtd.202201548] [Reference Citation Analysis]
|
3 |
Tian H, Ou J, Wang Y, Sun J, Gao J, Ye Y, Zhang R, Chen B, Wang F, Huang W, Li H, Liu L, Shao C, Xu Z, Peng F, Tu Y. Bladder microenvironment actuated proteomotors with ammonia amplification for enhanced cancer treatment. Acta Pharmaceutica Sinica B 2023. [DOI: 10.1016/j.apsb.2023.02.016] [Reference Citation Analysis]
|
4 |
Feng A, Cheng X, Huang X, Liu Y, He Z, Zhao J, Duan H, Shi Z, Guo J, Wang S, Yan X. Engineered Organic Nanorockets with Light-Driven Ultrafast Transportability for Antitumor Therapy. Small 2023;:e2206426. [PMID: 36840673 DOI: 10.1002/smll.202206426] [Reference Citation Analysis]
|
5 |
Song T, Zhang H, Luo Z, Shang L, Zhao Y. Primary Human Pancreatic Cancer Cells Cultivation in Microfluidic Hydrogel Microcapsules for Drug Evaluation. Adv Sci (Weinh) 2023;:e2206004. [PMID: 36808707 DOI: 10.1002/advs.202206004] [Reference Citation Analysis]
|
6 |
Abolhassani H, Zaer M, Shojaosadati SA, Hashemi-Najafabadi S. Rapid generation of homogenous tumor spheroid microtissues in a scaffold-free platform for high-throughput screening of a novel combination nanomedicine. PLoS One 2023;18:e0282064. [PMID: 36800370 DOI: 10.1371/journal.pone.0282064] [Reference Citation Analysis]
|
7 |
German SV, Abalymov AA, Kurochkin MA, Kan Y, Gorin DA, Novoselova MV. Plug-and-Play Lymph Node-on-Chip: Secondary Tumor Modeling by the Combination of Cell Spheroid, Collagen Sponge and T-Cells. Int J Mol Sci 2023;24. [PMID: 36834594 DOI: 10.3390/ijms24043183] [Reference Citation Analysis]
|
8 |
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023;632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Reference Citation Analysis]
|
9 |
Duan C, Yu M, Hu C, Xia H, Kankala RK. Polymeric microcarriers for minimally-invasive cell delivery. Front Bioeng Biotechnol 2023;11:1076179. [PMID: 36777246 DOI: 10.3389/fbioe.2023.1076179] [Reference Citation Analysis]
|
10 |
De Simone U, Pignatti P, Villani L, Russo LA, Sargenti A, Bonetti S, Buscaglia E, Coccini T. Human Astrocyte Spheroids as Suitable In Vitro Screening Model to Evaluate Synthetic Cannabinoid MAM2201-Induced Effects on CNS. Int J Mol Sci 2023;24. [PMID: 36674936 DOI: 10.3390/ijms24021421] [Reference Citation Analysis]
|
11 |
Yang XY, Zhang JG, Zhou QM, Yu JN, Lu YF, Wang XJ, Zhou JP, Ding XF, Du YZ, Yu RS. Extracellular matrix modulating enzyme functionalized biomimetic Au nanoplatform-mediated enhanced tumor penetration and synergistic antitumor therapy for pancreatic cancer. J Nanobiotechnology 2022;20:524. [PMID: 36496411 DOI: 10.1186/s12951-022-01738-6] [Reference Citation Analysis]
|
12 |
Amer J, Salhab A, Jaradat N, Abdallah S, Aburas H, Hattab S, Ghanim M, Alqub M. Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Biomedicine & Pharmacotherapy 2022;156:113885. [DOI: 10.1016/j.biopha.2022.113885] [Reference Citation Analysis]
|
13 |
Miyamoto Y, Koshidaka Y, Murase K, Kanno S, Noguchi H, Miyado K, Ikeya T, Suzuki S, Yagi T, Teramoto N, Hayashi S. Functional Evaluation of 3D Liver Models Labeled with Polysaccharide Functionalized Magnetic Nanoparticles. Materials 2022;15:7823. [DOI: 10.3390/ma15217823] [Reference Citation Analysis]
|
14 |
Alves CG, Lima-Sousa R, Melo BL, Ferreira P, Moreira AF, Correia IJ, Melo-Diogo D. Poly(2-ethyl-2-oxazoline)-IR780 conjugate nanoparticles for breast cancer phototherapy. Nanomedicine (Lond) 2022;17:2057-72. [PMID: 36803049 DOI: 10.2217/nnm-2022-0218] [Reference Citation Analysis]
|
15 |
Yang L, Afshari MJ, Ge J, Kou D, Chen L, Zhou D, Li C, Wu S, Zhang L, Zeng J, Zhong J, Stauber RH, Gao M. Functionalized Ultrasmall Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging of Tumor Hypoxia. Molecules 2022;27:6929. [PMID: 36296522 DOI: 10.3390/molecules27206929] [Reference Citation Analysis]
|
16 |
Chen Y, Xue Y, Xu L, Li W, Chen Y, Zheng S, Dai R, Liu J. Recapitulation of dynamic nanoparticle transport around tumors using a triangular multi-chamber tumor-on-a-chip. Lab Chip 2022. [PMID: 36172838 DOI: 10.1039/d2lc00631f] [Reference Citation Analysis]
|
17 |
Du J, Liu X, Hou Z, Liu X, Yao J, Cheng X, Wang X, Tang R. Acid-sensitive polymeric prodrug micelles for achieving enhanced chemo-photodynamic therapy. Journal of Drug Delivery Science and Technology 2022;74:103514. [DOI: 10.1016/j.jddst.2022.103514] [Reference Citation Analysis]
|
18 |
Roberts MG, Facca VJ, Keunen R, Yu Q, Reilly RM, Winnik MA. Changing Surface Polyethylene Glycol Architecture Affects Elongated Nanoparticle Penetration into Multicellular Tumor Spheroids. Biomacromolecules 2022. [PMID: 35816453 DOI: 10.1021/acs.biomac.2c00386] [Reference Citation Analysis]
|
19 |
Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, Zhang H, Yang G, Li M, Li T, Yang H, Li S, Qin X, Liu Y. Tumor Homing-Penetrating and Nanoenzyme-Augmented 2D Phototheranostics Against Hypoxic Solid Tumors. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.07.044] [Reference Citation Analysis]
|
20 |
Sokolova V, Ebel JF, Kollenda S, Klein K, Kruse B, Veltkamp C, Lange CM, Westendorf AM, Epple M. Uptake of Functional Ultrasmall Gold Nanoparticles in 3D Gut Cell Models. Small 2022;:e2201167. [PMID: 35712760 DOI: 10.1002/smll.202201167] [Reference Citation Analysis]
|
21 |
Rossi M, Blasi P. Multicellular Tumor Spheroids in Nanomedicine Research: A Perspective. Front Med Technol 2022;4. [DOI: 10.3389/fmedt.2022.909943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Henrique RBL, Lima RRM, Monteiro CAP, Oliveira WF, Pereira G, Cabral Filho PE, Fontes A. Advances in the study of spheroids as versatile models to evaluate biological interactions of inorganic nanoparticles. Life Sci 2022;:120657. [PMID: 35609631 DOI: 10.1016/j.lfs.2022.120657] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
23 |
Zhang L, Cao C, Kaushik N, Lai RY, Liao J, Wang G, Ariotti N, Jin D, Stenzel MH. Controlling the Biological Behaviors of Polymer-Coated Upconverting Nanoparticles by Adjusting the Linker Length of Estrone Ligands. Biomacromolecules 2022. [PMID: 35584062 DOI: 10.1021/acs.biomac.2c00265] [Reference Citation Analysis]
|
24 |
Ito C, Taguchi K, Moroi Y, Enoki Y, Tokuda R, Yamasaki K, Imoto S, Matsumoto K. Trimethoxy trityl groups as a potent substituent for anti-cancer cytidine analog prodrugs. Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.xphs.2022.04.020] [Reference Citation Analysis]
|
25 |
Monico DA, Calori IR, Souza C, Espreafico EM, Bi H, Tedesco AC. Melanoma spheroid-containing artificial dermis as an alternative approach to in vivo models. Experimental Cell Research 2022. [DOI: 10.1016/j.yexcr.2022.113207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Zamora-Perez P, Xiao C, Sanles-Sobrido M, Rovira-Esteva M, Conesa JJ, Mulens-Arias V, Jaque D, Rivera-Gil P. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Acta Biomater 2022;142:308-19. [PMID: 35104657 DOI: 10.1016/j.actbio.2022.01.052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Lafnoune A, Lee S, Heo J, Daoudi K, Darkaoui B, Chakir S, Cadi R, Mounaji K, Shum D, Seo H, Oukkache N. Anti-Cancer Activity of Buthus occitanus Venom on Hepatocellular Carcinoma in 3D Cell Culture. Molecules 2022;27:2219. [DOI: 10.3390/molecules27072219] [Reference Citation Analysis]
|
28 |
Yang J, Zhao D, Li C, Hou X, Zhang B, Xie X, Ma M, Jiang D, Zhao Y, Zhu D, Liu B. Investigation of the bioactivity and fluorescence imaging of multicellular tumor spheroid targeted labelling with CdSe/ZnS quantum dots. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05429-z] [Reference Citation Analysis]
|
29 |
Pacheco C, Martins C, Monteiro J, Baltazar F, Costa BM, Sarmento B. Glioblastoma Vasculature: From its Critical Role in Tumor Survival to Relevant in Vitro Modelling. Front Drug Deliv 2022;2. [DOI: 10.3389/fddev.2022.823412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Dalir Abdolahinia E, Barati G, Ranjbar-navazi Z, Kadkhoda J, Islami M, Hashemzadeh N, Maleki Dizaj S, Sharifi S. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. Journal of Drug Delivery Science and Technology 2022;68:103109. [DOI: 10.1016/j.jddst.2022.103109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
31 |
Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Reference Citation Analysis]
|
32 |
Li K, Xu J, Li P, Fan Y. A review of magnetic ordered materials in biomedical field: Constructions, applications and prospects. Composites Part B: Engineering 2022;228:109401. [DOI: 10.1016/j.compositesb.2021.109401] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
|
33 |
Vivo-llorca G, Morellá-aucejo Á, García-fernández A, Díez P, Llopis-lorente A, Orzáez M, Martínez-máñez R. Horseradish Peroxidase-Functionalized Gold Nanoconjugates for Breast Cancer Treatment Based on Enzyme Prodrug Therapy. IJN 2022;Volume 17:409-22. [DOI: 10.2147/ijn.s323802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Luo Q, Duan Z, Li X, Gu L, Ren L, Zhu H, Tian X, Chen R, Zhang H, Gong Q, Gu Z, Luo K. Branched Polymer‐Based Redox/Enzyme‐Activatable Photodynamic Nanoagent to Trigger STING‐Dependent Immune Responses for Enhanced Therapeutic Effect. Adv Funct Materials 2022;32:2110408. [DOI: 10.1002/adfm.202110408] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
|
35 |
Nkune NW, Abrahamse H. Nanoparticle-Based Drug Delivery Systems for Photodynamic Therapy of Metastatic Melanoma: A Review. Int J Mol Sci 2021;22:12549. [PMID: 34830431 DOI: 10.3390/ijms222212549] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
36 |
Mahapatra C, Lee R, Paul MK. Emerging role and promise of nanomaterials in organoid research. Drug Discov Today 2021:S1359-6446(21)00486-4. [PMID: 34774765 DOI: 10.1016/j.drudis.2021.11.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
37 |
Kulesza J, Pawłowska M, Augustin E. The Influence of Antitumor Unsymmetrical Bisacridines on 3D Cancer Spheroids Growth and Viability. Molecules 2021;26:6262. [PMID: 34684841 DOI: 10.3390/molecules26206262] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
38 |
Monteiro CF, Custódio CA, Mano JF. Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomater 2021;134:204-14. [PMID: 34303015 DOI: 10.1016/j.actbio.2021.07.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
39 |
Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioeng 2021;5:041502. [PMID: 34632251 DOI: 10.1063/5.0057773] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
40 |
Noy JM, Chen F, Stenzel M. Post-functionalization of drug-loaded nanoparticles prepared by polymerization-induced self-assembly (PISA) with mitochondria targeting ligands. Beilstein J Org Chem 2021;17:2302-14. [PMID: 34621393 DOI: 10.3762/bjoc.17.148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Granja A, Lima-Sousa R, Alves CG, de Melo-Diogo D, Pinheiro M, Sousa CT, Correia IJ, Reis S. Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy - Quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. Int J Pharm 2021;607:121044. [PMID: 34450227 DOI: 10.1016/j.ijpharm.2021.121044] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
|
42 |
Yagolovich A, Kuskov A, Kulikov P, Kurbanova L, Bagrov D, Artykov A, Gasparian M, Sizova S, Oleinikov V, Gileva A, Kirpichnikov M, Dolgikh D, Markvicheva E. Amphiphilic Poly(N-vinylpyrrolidone) Nanoparticles Conjugated with DR5-Specific Antitumor Cytokine DR5-B for Targeted Delivery to Cancer Cells. Pharmaceutics 2021;13:1413. [PMID: 34575490 DOI: 10.3390/pharmaceutics13091413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
43 |
Zhang W, Chen L, Cui M, Xie L, Xi Z, Wang Y, Shen X, Xu L. Successively Triggered Rod-shaped Protocells for Enhanced Tumor Chemo-Photothermal Therapy. Eur J Pharm Biopharm 2021:S0939-6411(21)00222-8. [PMID: 34461213 DOI: 10.1016/j.ejpb.2021.08.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
44 |
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021;175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
45 |
Liu X, Du J, Xie Z, Wang L, Liu X, Hou Z, Wang X, Tang R. Lactobionic acid-modified phycocyanin nanoparticles loaded with doxorubicin for synergistic chemo-photodynamic therapy. Int J Biol Macromol 2021;186:206-17. [PMID: 34246671 DOI: 10.1016/j.ijbiomac.2021.07.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
46 |
Itzhaki E, Hadad E, Moskovits N, Stemmer SM, Margel S. Tumor-Targeted Fluorescent Proteinoid Nanocapsules Encapsulating Synergistic Drugs for Personalized Cancer Therapy. Pharmaceuticals (Basel) 2021;14:648. [PMID: 34358074 DOI: 10.3390/ph14070648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
47 |
Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
|
48 |
Peres C, Matos AI, Moura LIF, Acúrcio RC, Carreira B, Pozzi S, Vaskovich-Koubi D, Kleiner R, Satchi-Fainaro R, Florindo HF. Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021;172:148-82. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
49 |
Zhang L, Chen C, Tay SS, Wen S, Cao C, Biro M, Jin D, Stenzel MH. Optimizing the Polymer Cloak for Upconverting Nanoparticles: An Evaluation of Bioactivity and Optical Performance. ACS Appl Mater Interfaces 2021;13:16142-54. [DOI: 10.1021/acsami.1c01922] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
50 |
Wu T, Liu M, Huang H, Sheng Y, Xiao H, Liu Y. Clustered nanobody-drug conjugates for targeted cancer therapy. Chem Commun (Camb) 2020;56:9344-7. [PMID: 32672289 DOI: 10.1039/d0cc03396k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
51 |
Silvestri A, Vicente F, Vicent MJ, Stechmann B, Fecke W. Academic collaborative models fostering the translation of physiological in vitro systems from basic research into drug discovery. Drug Discov Today 2021;26:1369-81. [PMID: 33677144 DOI: 10.1016/j.drudis.2021.02.024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
52 |
Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 2021;21:152. [PMID: 33663530 DOI: 10.1186/s12935-021-01853-8] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 26.0] [Reference Citation Analysis]
|
53 |
Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S. Biomaterials for Three-Dimensional Cell Culture: From Applications in Oncology to Nanotechnology. Nanomaterials (Basel) 2021;11:481. [PMID: 33668665 DOI: 10.3390/nano11020481] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
|
54 |
Moradi Kashkooli F, Soltani M, Souri M, Meaney C, Kohandel M. Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today 2021;36:101057. [DOI: 10.1016/j.nantod.2020.101057] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 17.0] [Reference Citation Analysis]
|
55 |
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021;22:E830. [PMID: 33467648 DOI: 10.3390/ijms22020830] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
56 |
Wu ZX, Mai Q, Yang Y, Wang JQ, Ma H, Zeng L, Chen ZS, Pan Y. Overexpression of human ATP-binding cassette transporter ABCG2 contributes to reducing the cytotoxicity of GSK1070916 in cancer cells. Biomed Pharmacother 2021;136:111223. [PMID: 33450491 DOI: 10.1016/j.biopha.2021.111223] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
|
57 |
Yu Q, Roberts MG, Houdaihed L, Liu Y, Ho K, Walker G, Allen C, Reilly RM, Manners I, Winnik MA. Investigating the influence of block copolymer micelle length on cellular uptake and penetration in a multicellular tumor spheroid model. Nanoscale 2021;13:280-91. [DOI: 10.1039/d0nr08076d] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 14.5] [Reference Citation Analysis]
|
58 |
Abreu TR, Biscaia M, Gonçalves N, Fonseca NA, Moreira JN. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Adv Exp Med Biol 2021;1295:271-99. [PMID: 33543464 DOI: 10.1007/978-3-030-58174-9_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
59 |
Daunys S, Janonienė A, Januškevičienė I, Paškevičiūtė M, Petrikaitė V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. Adv Exp Med Biol 2021;1295:243-70. [PMID: 33543463 DOI: 10.1007/978-3-030-58174-9_11] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
60 |
Bauleth-Ramos T, Sarmento B. In Vitro Assays for Nanoparticle-Cancer Cell Interaction Studies. Adv Exp Med Biol 2021;1295:223-42. [PMID: 33543462 DOI: 10.1007/978-3-030-58174-9_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
61 |
Li Y, Zhao Z, Lin CY, Liu Y, Staveley-OCarroll KF, Li G, Cheng K. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Theranostics 2021;11:2182-200. [PMID: 33500719 DOI: 10.7150/thno.53102] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
62 |
Wang Y, Kankala RK, Wang S, Zhang YS, Chen A. Cellularized polymeric microarchitectures for drug screening. Smart Materials in Medicine 2021;2:96-113. [DOI: 10.1016/j.smaim.2021.03.002] [Reference Citation Analysis]
|
63 |
Ellacott SH, Sanchez-Cano C, Mansfield EDH, Rho JY, Song JI, Peltier R, Perrier S. Comparative Study of the Cellular Uptake and Intracellular Behavior of a Library of Cyclic Peptide-Polymer Nanotubes with Different Self-Assembling Properties. Biomacromolecules 2021;22:710-22. [PMID: 33350825 DOI: 10.1021/acs.biomac.0c01512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
64 |
Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12. [PMID: 33291351 DOI: 10.3390/pharmaceutics12121186] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 21.7] [Reference Citation Analysis]
|
65 |
Xu J, Fang Q, Yang L, Gao J, Xue Y, Wang X, Tang R. pH-sensitive deoxycholic acid dimer for improving doxorubicin delivery and antitumor activity in vivso. Colloids and Surfaces B: Biointerfaces 2020;196:111319. [DOI: 10.1016/j.colsurfb.2020.111319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
66 |
Van Zundert I, Fortuni B, Rocha S. From 2D to 3D Cancer Cell Models-The Enigmas of Drug Delivery Research. Nanomaterials (Basel) 2020;10:E2236. [PMID: 33187231 DOI: 10.3390/nano10112236] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
67 |
Mó I, Alves CG, de Melo-Diogo D, Lima-Sousa R, Correia IJ. Assessing the Combinatorial Chemo-Photothermal Therapy Mediated by Sulfobetaine Methacrylate-Functionalized Nanoparticles in 2D and 3D In Vitro Cancer Models. Biotechnol J 2020;15:e2000219. [PMID: 33063471 DOI: 10.1002/biot.202000219] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
68 |
Fu JJ, Lv XH, Wang LX, He X, Li Y, Yu L, Li CM. Cutting and Bonding Parafilm® to Fast Prototyping Flexible Hanging Drop Chips for 3D Spheroid Cultures. Cell Mol Bioeng 2021;14:187-99. [PMID: 33868499 DOI: 10.1007/s12195-020-00660-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
69 |
Sokolova V, Mekky G, van der Meer SB, Seeds MC, Atala AJ, Epple M. Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020;10:18033. [PMID: 33093563 DOI: 10.1038/s41598-020-75125-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
70 |
Chen X, Yi Z, Chen G, Ma X, Su W, Deng Z, Ma L, Tong Q, Ran Y, Li X. Carrier-Enhanced Photodynamic Cancer Therapy of Self-Assembled Green Tea Polyphenol-Based Nanoformulations. ACS Sustainable Chem Eng 2020;8:16372-84. [DOI: 10.1021/acssuschemeng.0c06645] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
71 |
Chelobanov B, Poletaeva J, Epanchintseva A, Tupitsyna A, Pyshnaya I, Ryabchikova E. Ultrastructural Features of Gold Nanoparticles Interaction with HepG2 and HEK293 Cells in Monolayer and Spheroids. Nanomaterials (Basel) 2020;10:E2040. [PMID: 33081137 DOI: 10.3390/nano10102040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
72 |
Lázaro I, Sharp P, Gurcan C, Ceylan A, Stylianou M, Kisby T, Chen Y, Vranic S, Barr K, Taheri H, Ozen A, Bussy C, Yilmazer A, Kostarelos K. Deep Tissue Translocation of Graphene Oxide Sheets in Human Glioblastoma 3D Spheroids and an Orthotopic Xenograft Model. Adv Therap 2021;4:2000109. [DOI: 10.1002/adtp.202000109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
73 |
Niora M, Pedersbæk D, Münter R, Weywadt MFV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS Omega 2020;5:21162-71. [PMID: 32875252 DOI: 10.1021/acsomega.0c02879] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
74 |
Santi M, Mapanao AK, Cappello V, Voliani V. Production of 3D Tumor Models of Head and Neck Squamous Cell Carcinomas for Nanotheranostics Assessment. ACS Biomater Sci Eng 2020;6:4862-9. [PMID: 33395269 DOI: 10.1021/acsbiomaterials.0c00617] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
75 |
Sokolova V, Nzou G, van der Meer SB, Ruks T, Heggen M, Loza K, Hagemann N, Murke F, Giebel B, Hermann DM, Atala AJ, Epple M. Ultrasmall gold nanoparticles (2 nm) can penetrate and enter cell nuclei in an in vitro 3D brain spheroid model. Acta Biomater 2020;111:349-62. [PMID: 32413579 DOI: 10.1016/j.actbio.2020.04.023] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
|
76 |
Neuer AL, Gerken LRH, Keevend K, Gogos A, Herrmann IK. Uptake, distribution and radio-enhancement effects of gold nanoparticles in tumor microtissues. Nanoscale Adv 2020;2:2992-3001. [PMID: 36132396 DOI: 10.1039/d0na00256a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
77 |
Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials (Basel) 2020;10:E1341. [PMID: 32660093 DOI: 10.3390/nano10071341] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
78 |
Jiménez-López J, García-Hevia L, Melguizo C, Prados J, Bañobre-López M, Gallo J. Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics 2020;12:E637. [PMID: 32645938 DOI: 10.3390/pharmaceutics12070637] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
79 |
Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr Med Chem 2020;27:7234-55. [PMID: 32586245 DOI: 10.2174/0929867327666200625151134] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
80 |
Mó I, Sabino IJ, Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (Lond) 2020;15:1513-25. [PMID: 32552537 DOI: 10.2217/nnm-2020-0054] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
81 |
Li K, Chen F, Wang Y, Stenzel MH, Chapman R. Polyion Complex Micelles for Protein Delivery Benefit from Flexible Hydrophobic Spacers in the Binding Group. Macromol Rapid Commun 2020;41:2000208. [DOI: 10.1002/marc.202000208] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
82 |
Cao C, Chen F, Garvey CJ, Stenzel MH. Drug-Directed Morphology Changes in Polymerization-Induced Self-Assembly (PISA) Influence the Biological Behavior of Nanoparticles. ACS Appl Mater Interfaces 2020;12:30221-33. [DOI: 10.1021/acsami.0c09054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
83 |
Mapanao AK, Voliani V. Three-dimensional tumor models: Promoting breakthroughs in nanotheranostics translational research. Applied Materials Today 2020;19:100552. [DOI: 10.1016/j.apmt.2019.100552] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
84 |
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. Int Rev Neurobiol 2020;151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
85 |
Noy JM, Chen F, Akhter DT, Houston ZH, Fletcher NL, Thurecht KJ, Stenzel MH. Direct Comparison of Poly(ethylene glycol) and Phosphorylcholine Drug-Loaded Nanoparticles In Vitro and In Vivo. Biomacromolecules 2020;21:2320-33. [PMID: 32343128 DOI: 10.1021/acs.biomac.0c00257] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
86 |
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. Nanomaterials (Basel) 2020;10:E916. [PMID: 32397449 DOI: 10.3390/nano10050916] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
|
87 |
Santi M, Mapanao AK, Cassano D, Vlamidis Y, Cappello V, Voliani V. Endogenously-Activated Ultrasmall-in-Nano Therapeutics: Assessment on 3D Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2020;12:E1063. [PMID: 32344838 DOI: 10.3390/cancers12051063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
88 |
Bauleth-Ramos T, Feijão T, Gonçalves A, Shahbazi MA, Liu Z, Barrias C, Oliveira MJ, Granja P, Santos HA, Sarmento B. Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. J Control Release 2020;323:398-411. [PMID: 32320816 DOI: 10.1016/j.jconrel.2020.04.025] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
89 |
Wei C, Liu Y, Zhu X, Chen X, Zhou Y, Yuan G, Gong Y, Liu J. Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials 2020;238:119848. [DOI: 10.1016/j.biomaterials.2020.119848] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
|
90 |
Huang L, Abdalla AME, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020;21:E1895. [PMID: 32164316 DOI: 10.3390/ijms21051895] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
|
91 |
Mai NXD, Birault A, Matsumoto K, Ta HKT, Intasa-Ard SG, Morrison K, Thang PB, Doan TLH, Tamanoi F. Biodegradable Periodic Mesoporous Organosilica (BPMO) Loaded with Daunorubicin: A Promising Nanoparticle-Based Anticancer Drug. ChemMedChem 2020;15:593-9. [PMID: 32020745 DOI: 10.1002/cmdc.201900595] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
92 |
Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020;21:1222-33. [DOI: 10.1021/acs.biomac.9b01681] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
93 |
Okamoto Y, Taguchi K, Imoto S, Giam Chuang VT, Yamasaki K, Otagiri M. Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. Journal of Drug Delivery Science and Technology 2020;55:101381. [DOI: 10.1016/j.jddst.2019.101381] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
94 |
Li Z, Guo X, Sun L, Xu J, Liu W, Li T, Wang J. A simple microsphere‐based mold to rapidly fabricate microwell arrays for multisize 3D tumor culture. Biotechnology and Bioengineering 2020;117:1092-100. [DOI: 10.1002/bit.27257] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
95 |
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 Targeting Mediated by Polymeric Nanoparticles and Combination of Chlorine TPCS2a-PDT and Docetaxel-Chemotherapy for Efficient Killing of Breast Differentiated and Stem Cancer Cells In Vitro. Cancers (Basel) 2020;12:E278. [PMID: 31979218 DOI: 10.3390/cancers12020278] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
|
96 |
Derbenev IN, Filippov AV, Stace AJ, Besley E. Electrostatic interactions between spheroidal dielectric particles. J Chem Phys 2020;152:024121. [PMID: 31941309 DOI: 10.1063/1.5129756] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
97 |
Liu Y, Wang F, Lu H, Fang G, Wen S, Chen C, Shan X, Xu X, Zhang L, Stenzel M, Jin D. Super‐Resolution Mapping of Single Nanoparticles inside Tumor Spheroids. Small 2020;16:1905572. [DOI: 10.1002/smll.201905572] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
|
98 |
Lu H, Su J, Mamdooh R, Li Y, Stenzel MH. Cellular Uptake of Gold Nanoparticles and Their Movement in 3D Multicellular Tumor Spheroids: Effect of Molecular Weight and Grafting Density of Poly(2‐hydroxyl ethyl acrylate). Macromol Biosci 2020;20:1900221. [DOI: 10.1002/mabi.201900221] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
99 |
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. Nanoscale Horiz 2020;5:400-30. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
|
100 |
Gaio E, Guerrini A, Ballestri M, Varchi G, Ferroni C, Martella E, Columbaro M, Moret F, Reddi E. Keratin nanoparticles co-delivering Docetaxel and Chlorin e6 promote synergic interaction between chemo- and photo-dynamic therapies. J Photochem Photobiol B 2019;199:111598. [PMID: 31465971 DOI: 10.1016/j.jphotobiol.2019.111598] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
|
101 |
Yang Y, Liu S, Geng J. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring. Curr Pharm Des 2019;25:2953-68. [PMID: 31362686 DOI: 10.2174/1381612825666190730100051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
102 |
Zheng X, Pan D, Chen M, Dai X, Cai H, Zhang H, Gong Q, Gu Z, Luo K. Tunable Hydrophile-Lipophile Balance for Manipulating Structural Stability and Tumor Retention of Amphiphilic Nanoparticles. Adv Mater 2019;31:e1901586. [PMID: 31259438 DOI: 10.1002/adma.201901586] [Cited by in Crossref: 68] [Cited by in F6Publishing: 71] [Article Influence: 17.0] [Reference Citation Analysis]
|
103 |
Dai W, Liu P, Guo S, Liu Z, Wang M, Shi J, Tong B, Liu T, Cai Z, Dong Y. Triphenylquinoline (TPQ)-Based Dual-State Emissive Probe for Cell Imaging in Multicellular Tumor Spheroids. ACS Appl Bio Mater 2019;2:3686-92. [DOI: 10.1021/acsabm.9b00596] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
104 |
Wu H, Yu M, Miao Y, He S, Dai Z, Song W, Liu Y, Song S, Ahmad E, Wang D, Gan Y. Cholesterol-tuned liposomal membrane rigidity directs tumor penetration and anti-tumor effect. Acta Pharm Sin B 2019;9:858-70. [PMID: 31384544 DOI: 10.1016/j.apsb.2019.02.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
|
105 |
Souza W, Piperni SG, Laviola P, Rossi AL, Rossi MID, Archanjo BS, Leite PE, Fernandes MH, Rocha LA, Granjeiro JM, Ribeiro AR. The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Sci Rep 2019;9:9309. [PMID: 31249337 DOI: 10.1038/s41598-019-45797-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
106 |
Millard M, Yakavets I, Piffoux M, Brun A, Gazeau F, Guigner JM, Jasniewski J, Lassalle HP, Wilhelm C, Bezdetnaya L. mTHPC-loaded extracellular vesicles outperform liposomal and free mTHPC formulations by an increased stability, drug delivery efficiency and cytotoxic effect in tridimensional model of tumors. Drug Deliv 2018;25:1790-801. [PMID: 30785308 DOI: 10.1080/10717544.2018.1513609] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
|
107 |
Li G, Lei Q, Wang F, Deng D, Wang S, Tian L, Shen W, Cheng Y, Liu Z, Wu S. Fluorinated Polymer Mediated Transmucosal Peptide Delivery for Intravesical Instillation Therapy of Bladder Cancer. Small 2019;15:e1900936. [PMID: 31074941 DOI: 10.1002/smll.201900936] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
|
108 |
Negron K, Khalasawi N, Lu B, Ho CY, Lee J, Shenoy S, Mao HQ, Wang TH, Hanes J, Suk JS. Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation. J Control Release 2019;303:1-11. [PMID: 30978431 DOI: 10.1016/j.jconrel.2019.04.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
109 |
Lu G, Lv C, Bao W, Li F, Zhang F, Zhang L, Wang S, Gao X, Zhao D, Wei W, Xie HY. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem Sci 2019;10:4847-53. [PMID: 31183034 DOI: 10.1039/c9sc00324j] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
|
110 |
Liu X, Wang C, Ma H, Yu F, Hu F, Yuan H. Water-Responsive Hybrid Nanoparticles Codelivering ICG and DOX Effectively Treat Breast Cancer via Hyperthermia-aided DOX Functionality and Drug Penetration. Adv Healthc Mater 2019;8:e1801486. [PMID: 30856296 DOI: 10.1002/adhm.201801486] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 12.0] [Reference Citation Analysis]
|
111 |
Durymanov M, Kroll C, Permyakova A, Reineke J. Role of Endocytosis in Nanoparticle Penetration of 3D Pancreatic Cancer Spheroids. Mol Pharmaceutics 2019;16:1074-82. [DOI: 10.1021/acs.molpharmaceut.8b01078] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
|
112 |
Albertó M, Cuello HA, Gulino CA, Pifano M, Belgorosky D, Gabri MR, Eiján AM, Segatori VI. Expression of bladder cancer-associated glycans in murine tumor cell lines. Oncol Lett 2019;17:3141-50. [PMID: 30867744 DOI: 10.3892/ol.2019.9995] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
113 |
Zhang L, Hao P, Yang D, Feng S, Peng B, Appelhans D, Zhang T, Zan X. Designing nanoparticles with improved tumor penetration: surface properties from the molecular architecture viewpoint. J Mater Chem B 2019;7:953-64. [PMID: 32255100 DOI: 10.1039/c8tb03034k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
|
114 |
Lai H, Lu M, Chen F, Lalevée J, Stenzel MH, Xiao P. Amphiphilic polymer coated nanodiamonds: a promising platform to deliver azonafide. Polym Chem 2019;10:1904-11. [DOI: 10.1039/c9py00055k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
115 |
Cassano D, Santi M, D’autilia F, Mapanao AK, Luin S, Voliani V. Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures. Mater Horiz 2019;6:531-7. [DOI: 10.1039/c9mh00096h] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
|
116 |
Zhu X, Vo C, Taylor M, Smith BR. Non-spherical micro- and nanoparticles in nanomedicine. Mater Horiz 2019;6:1094-121. [DOI: 10.1039/c8mh01527a] [Cited by in Crossref: 80] [Cited by in F6Publishing: 85] [Article Influence: 20.0] [Reference Citation Analysis]
|
117 |
Lu M, Henry CE, Lai H, Khine YY, Ford CE, Stenzel MH. A new 3D organotypic model of ovarian cancer to help evaluate the antimetastatic activity of RAPTA-C conjugated micelles. Biomater Sci 2019;7:1652-60. [DOI: 10.1039/c8bm01326h] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
118 |
Chen F, Raveendran R, Cao C, Chapman R, Stenzel MH. Correlation between polymer architecture and polyion complex micelle stability with proteins in spheroid cancer models as seen by light-sheet microscopy. Polym Chem 2019;10:1221-30. [DOI: 10.1039/c8py01565a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
|
119 |
García I, Henriksen-lacey M, Calvo J, de Aberasturi DJ, Paz MM, Liz-marzán LM. Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chem 2019;30:242-52. [DOI: 10.1021/acs.bioconjchem.8b00898] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
|
120 |
Lu M, Khine YY, Chen F, Cao C, Garvey CJ, Lu H, Stenzel MH. Sugar Concentration and Arrangement on the Surface of Glycopolymer Micelles Affect the Interaction with Cancer Cells. Biomacromolecules 2019;20:273-84. [DOI: 10.1021/acs.biomac.8b01406] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
|
121 |
Li Y, Zhang X, Zhang Z, Wu H, Xu X, Gu Z. Tumor-adapting and tumor-remodeling AuNR@dendrimer-assembly nanohybrids overcome impermeable multidrug-resistant cancer. Mater Horiz 2018;5:1047-57. [DOI: 10.1039/c8mh00694f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
|
122 |
Chen F, Li K, Hart-smith G, Xu YD, Jiang Y, Lu H, Fok S, Macmillian A, Pandzic E, Stenzel M. Light-sheet microscopy as a tool to understanding the behaviour of Polyion complex micelles for drug delivery. Chem Commun 2018;54:12618-21. [DOI: 10.1039/c8cc04986f] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
|