BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res 2018;32:811-22. [PMID: 29356205 DOI: 10.1002/ptr.6024] [Cited by in Crossref: 118] [Cited by in F6Publishing: 119] [Article Influence: 23.6] [Reference Citation Analysis]
Number Citing Articles
1 Amin PJ, Shankar BS. Arabinogalactan G1-4A isolated from Tinospora cordifolia induces PKC/mTOR mediated direct activation of natural killer cells and through dendritic cell cross-talk. Biochim Biophys Acta Gen Subj 2023;1867:130312. [PMID: 36690186 DOI: 10.1016/j.bbagen.2023.130312] [Reference Citation Analysis]
2 El-Gendi H, Abu-Serie MM, Kamoun EA, Saleh AK, El-Fakharany EM. Statistical optimization and characterization of fucose-rich polysaccharides extracted from pumpkin (Cucurbita maxima) along with antioxidant and antiviral activities. Int J Biol Macromol 2023;232:123372. [PMID: 36706886 DOI: 10.1016/j.ijbiomac.2023.123372] [Reference Citation Analysis]
3 Ricci A, Roviello GN. Exploring the Protective Effect of Food Drugs against Viral Diseases: Interaction of Functional Food Ingredients and SARS-CoV-2, Influenza Virus, and HSV. Life (Basel) 2023;13. [PMID: 36836758 DOI: 10.3390/life13020402] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Samad A, Ajmal A, Mahmood A, Khurshid B, Li P, Jan SM, Rehman AU, He P, Abdalla AN, Umair M, Hu J, Wadood A. Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation. Front Mol Biosci 2023;10:1060076. [PMID: 36959979 DOI: 10.3389/fmolb.2023.1060076] [Reference Citation Analysis]
5 Liang J, Zheng Y, Tong X, Yang N, Dai S. In Silico Identification of Anti-SARS-CoV-2 Medicinal Plants Using Cheminformatics and Machine Learning. Molecules 2022;28. [PMID: 36615401 DOI: 10.3390/molecules28010208] [Reference Citation Analysis]
6 Gandhi Y, Mishra SK, Rawat H, Grewal J, Kumar R, Shakya SK, Jain VK, Babu G, Singh A, Singh R, Acharya R, Kumar V. Phytomedicines explored under in vitro and in silico studies against coronavirus: An opportunity to develop traditional medicines. S Afr J Bot 2022;151:451-83. [PMID: 35530267 DOI: 10.1016/j.sajb.2022.04.053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022;27. [PMID: 36500375 DOI: 10.3390/molecules27238280] [Reference Citation Analysis]
8 Onyango H, Odhiambo P, Angwenyi D, Okoth P, Gong W. In Silico Identification of New Anti-SARS-CoV-2 Main Protease (Mpro) Molecules with Pharmacokinetic Properties from Natural Sources Using Molecular Dynamics (MD) Simulations and Hierarchical Virtual Screening. Journal of Tropical Medicine 2022;2022:1-22. [DOI: 10.1155/2022/3697498] [Reference Citation Analysis]
9 Aarthy M, Muthuramalingam P, Ramesh M, Singh SK. Unraveling the multi-targeted curative potential of bioactive molecules against cervical cancer through integrated omics and systems pharmacology approach. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-18358-7] [Reference Citation Analysis]
10 Wei H, Liu M, Ke K, Xiao S, Huang L, He Q, Mo C, Pang H, Xiao G, Li P, Yu Q. Study on aptamer based high throughput approach identifies natural ingredients against RGNNV. J Fish Dis 2022. [PMID: 35916773 DOI: 10.1111/jfd.13693] [Reference Citation Analysis]
11 Ogbole OO, Ajayi TA, Odeku OA. Herbs and Plants Used for the Management and Treatment of Hepatitis Infections. Herbal Drugs for the Management of Infectious Diseases 2022. [DOI: 10.1002/9781119818779.ch14] [Reference Citation Analysis]
12 Sydor BG, Ramos-Milaré ÁCFH, Pereira MB, Brustolin AÁ, Montaholi DC, Lera-Nonose DSSL, Negri M, de Lima Scodro RB, Teixeira JJV, Lonardoni MVC. Plants of the Phytolaccaceae family with antimicrobial activity: A systematic review. Phytother Res 2022. [PMID: 35858779 DOI: 10.1002/ptr.7557] [Reference Citation Analysis]
13 Han M, Gao S, Hu W, Zhou Q, Li H, Lin W, Chen F. Inhibitory effects of cedar pine needle extract on H9N2 avian influenza virus in vitro and in vivo. Virology 2022;574:25-36. [PMID: 35878455 DOI: 10.1016/j.virol.2022.07.011] [Reference Citation Analysis]
14 Chandra K, Das AK, Banday S, Rana NA, Arora M, Jain S, Islam F, Agarwal S, Kashyap V, Joshi S, Mueed A, Dudeja M. Efficacy of polyherbal formulations for prevention of COVID-19 infection in high-risk subjects: A randomized open-label controlled clinical trial. Phytother Res 2022. [PMID: 35791089 DOI: 10.1002/ptr.7531] [Reference Citation Analysis]
15 Uhomoibhi JO, Shode FO, Idowu KA, Sabiu S. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2. Journal of Molecular Graphics and Modelling 2022;114:108185. [DOI: 10.1016/j.jmgm.2022.108185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Elhusseiny SM, El-mahdy TS, Elleboudy NS, Yahia IS, Farag MM, Ismail NS, Yassien MA, Aboshanab KM. In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms. IDR 2022;Volume 15:3459-75. [DOI: 10.2147/idr.s362823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bjorklund G, Lysiuk R, Butnariu M, Lenchyk L, Sharma V, Sharma R, Martins N. LOW PREVALENCE OF COVID-19 IN LAOS AND CAMBODIA: DOES DIET PLAY A ROLE? AML 2022;28:161-180. [DOI: 10.25040/aml2022.1-2.161] [Reference Citation Analysis]
18 Boadu A, Agoni C, Karpoormath R, Soliman M, Nlooto M. Repurposing antiviral phytochemicals from the leaf extracts of Spondias mombin (Linn) towards the identification of potential SARSCOV-2 inhibitors. Sci Rep 2022;12:10896. [PMID: 35764663 DOI: 10.1038/s41598-022-14558-3] [Reference Citation Analysis]
19 Nawrot J, Gornowicz-Porowska J, Budzianowski J, Nowak G, Schroeder G, Kurczewska J. Medicinal Herbs in the Relief of Neurological, Cardiovascular, and Respiratory Symptoms after COVID-19 Infection A Literature Review. Cells 2022;11:1897. [PMID: 35741026 DOI: 10.3390/cells11121897] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Wei H, Guo Z, Long Y, Liu M, Xiao J, Huang L, Yu Q, Li P. Aptamer-Based High-Throughput Screening Model for Efficient Selection and Evaluation of Natural Ingredients against SGIV Infection. Viruses 2022;14:1242. [PMID: 35746713 DOI: 10.3390/v14061242] [Reference Citation Analysis]
21 Allambergenova Z, Kasela M, Adamczuk G, Humeniuk E, Iwan M, Świątek Ł, Boguszewska A, Rajtar B, Józefczyk A, Baj T, Wojtanowski KK, Korulkin D, Kozhanova K, Ibragimova L, Sakipova Z, Tyśkiewicz K, Malm A, Skalicka-woźniak K. Phytochemical Profile and Biological Activity of the Ethanolic Extract from the Aerial Part of Crocus alatavicus Regel & Semen Growing Wildly in Southern Kazakhstan. Molecules 2022;27:3468. [DOI: 10.3390/molecules27113468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Huneif MA, Alqahtani SM, Abdulwahab A, Almedhesh SA, Mahnashi MH, Riaz M, Ur-Rahman N, Jan MS, Ullah F, Aasim M, Sadiq A. α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules 2022;27:3444. [PMID: 35684382 DOI: 10.3390/molecules27113444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Olasunkanmi OI, Mageto J, Avala Ntsigouaye J, Yi M, Fei Y, Chen Y, Chen S, Xu W, Lin L, Zhao W, Wang Y, Zhong ZH. Novel Antiviral Activity of Ethyl 3-Hydroxyhexanoate Against Coxsackievirus B Infection. Front Microbiol 2022;13:875485. [PMID: 35495645 DOI: 10.3389/fmicb.2022.875485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Goyal R, Bala R, Sindhu RK, Zehravi M, Madaan R, Ramproshad S, Mondal B, Dey A, Rahman MH, Cavalu S. Bioactive Based Nanocarriers for the Treatment of Viral Infections and SARS-CoV-2. Nanomaterials 2022;12:1530. [DOI: 10.3390/nano12091530] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
25 Ara SA, Ahmad B, Fazil M, Akhlaq S, Akram U, Haque M, Khan AA. Izkhar [Cymbopogon martinii (Roxb.)] Wats.: An Evidence-based Review on its Phytochemical Aspect and Hepatoprotective Traditional Use in Unani Medicine. Journal of Herbal Medicine 2022. [DOI: 10.1016/j.hermed.2022.100576] [Reference Citation Analysis]
26 El-Ashrey MK, Bakr RO, Fayed MAA, Refaey RH, Nissan YM. Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-COV-2 main protease. Virology 2022;570:18-28. [PMID: 35339903 DOI: 10.1016/j.virol.2022.03.003] [Reference Citation Analysis]
27 Mocanu ML, Amariei S. Elderberries—A Source of Bioactive Compounds with Antiviral Action. Plants 2022;11:740. [DOI: 10.3390/plants11060740] [Reference Citation Analysis]
28 Bozorgi Kasgari M, Hazrati MH, Tabasi Moghaddam M, Sadeghi Kowsarkhizi A, Zareian M, Karimi E, Oskoueian E. Phytobiotic potential of Teucrium polium phenolic microcapsules against Salmonella enteritidis infection in mice. Polym Bull . [DOI: 10.1007/s00289-022-04134-0] [Reference Citation Analysis]
29 Jana A, Roy T, Layek S, Ghosal S, Banerjee DR. Computational Investigation on Natural Quinazoline Alkaloids as Potential Inhibitors of the Main Protease (Mpro) of SARS-CoV-2. J Comput Biophys Chem 2022;21:65-82. [DOI: 10.1142/s2737416522500053] [Reference Citation Analysis]
30 Wu J, Blackshaw K, Cho J, Koolaji N, Yun J, Schindeler A, Valtchev P, Dehghani F. Recovery of high-value compounds from food by-products. Food Engineering Innovations Across the Food Supply Chain 2022. [DOI: 10.1016/b978-0-12-821292-9.00002-9] [Reference Citation Analysis]
31 Reyes A, Farías MA, Corrales N, Tognarelli E, González PA. Herpes Simplex Viruses Type 1 and Type 2. Encyclopedia of Infection and Immunity 2022. [DOI: 10.1016/b978-0-12-818731-9.00062-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Tettevi EJ, Maina M, Simpong DL, Osei-Atweneboana MY, Ocloo A. A Review of African Medicinal Plants and Functional Foods for the Management of Alzheimer's Disease-related Phenotypes, Treatment of HSV-1 Infection and/or Improvement of Gut Microbiota. J Evid Based Integr Med 2022;27:2515690X221114657. [PMID: 35866220 DOI: 10.1177/2515690X221114657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Xu XY, Wang DY, Li YP, Deyrup ST, Zhang HJ. Plant-derived lignans as potential antiviral agents: a systematic review. Phytochem Rev 2022;21:239-89. [PMID: 34093097 DOI: 10.1007/s11101-021-09758-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
34 Sachan N, Chandra P, Shivam, Pal D. Indigenous Plants Against Cytomegalovirus, Cytomegalovirus B1, and Epstein-Barr Virus Infection: Phytochemical, Clinical, and Preclinical Studies and the Prevalence and Impact on Patients with Hematological Diseases. Reference Series in Phytochemistry 2022. [DOI: 10.1007/978-3-030-83350-3_27-1] [Reference Citation Analysis]
35 Ezema CA, Ezeorba TPC, Aguchem RN, Okagu IU. Therapeutic benefits of Salvia species: A focus on cancer and viral infection. Heliyon 2022;8:e08763. [DOI: 10.1016/j.heliyon.2022.e08763] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Dubey A, Kumar A, Bankole MM, Khan ML. Plants with potent antiviral properties. Coronavirus Drug Discovery 2022. [DOI: 10.1016/b978-0-323-95578-2.00015-7] [Reference Citation Analysis]
37 Singh A, Gautam A, Singh B, Navneet. Antiviral effects of medicinal plants and their active phytochemical constituents against respiratory diseases and associated biological functions. Coronavirus Drug Discovery 2022. [DOI: 10.1016/b978-0-323-95574-4.00012-3] [Reference Citation Analysis]
38 Banks JM, Brandini DA, Barbosa DB, Takamiya AS, Thakkar P, Zheng K, Naqvi AR. Leveraging microbicidal and immunosuppressive potential of herbal medicine in oral diseases. Herbal Medicines 2022. [DOI: 10.1016/b978-0-323-90572-5.00015-9] [Reference Citation Analysis]
39 D.e. S, I.m. B, U. S, S.m. M, B. A. Potential Therapeutic Option used for the Cure of Covid-19 using Locally Available Indigenous Herbs (Nigeria) Containing Antioxidant, Vitamins, Minerals; thus, this will help to tackle Current Status, Challenges as well as Futuristic Perspective Globally. African Journal of Biology and Medical Research 2021;4:53-117. [DOI: 10.52589/ajbmr-afsi6cxu] [Reference Citation Analysis]
40 Allahyari S, Pakbin B, Amani Z, Mahmoudi R, Hamidiyan G, Peymani A, Qajarbeygi P, Mousavi S. Antiviral activity of Phoenix dactylifera extracts against herpes simplex virus type 1: an animal study. Comp Clin Pathol 2021;30:945-951. [DOI: 10.1007/s00580-021-03293-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Nimesh S, Akram M, Ahmad MI, Ahmad A, Kumari P, Lal M. Immunity-Boosting Natural Herbs to Combat COVID-19 Pandemic: A Narrative Review. Borneo J Pharm 2021;4:260-72. [DOI: 10.33084/bjop.v4i4.2534] [Reference Citation Analysis]
42 Abraham J, Florentine S. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review. Plants (Basel) 2021;10:2600. [PMID: 34961070 DOI: 10.3390/plants10122600] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
43 Panchamoorthy R, Vel N. Herbal spices-based therapeutics for diabetic patients with COVID-19 infection: A review. NRFHH 2022;2:32-51. [DOI: 10.53365/nrfhh/143758] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
44 Khan F, Ansari AN, Nayab M. Rationalistic approach in COVID-19 prevention through intervention of Unani medicine prevalent in epidemic - A review. J Herb Med 2021;30:100515. [PMID: 34722133 DOI: 10.1016/j.hermed.2021.100515] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 M. Uchejeso O, R. Chinaza I, A.k. Goodluck O, I. Rinpan J. Some Igbo Indigenous Plants with Anti-COVID-19 Properties. Alternative Medicine - Update 2021. [DOI: 10.5772/intechopen.94244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
46 Luo L, Yang J, Wang C, Wu J, Li Y, Zhang X, Li H, Zhang H, Zhou Y, Lu A, Chen S. Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities. Sci China Life Sci 2021. [PMID: 34705221 DOI: 10.1007/s11427-020-1959-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Jalal Z, Bakour M, Lyoussi B. Medicinal Plants and Zinc: Impact on COVID-19 Pandemic. ScientificWorldJournal 2021;2021:9632034. [PMID: 34602868 DOI: 10.1155/2021/9632034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
48 Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021;8:732256. [PMID: 34557521 DOI: 10.3389/fmolb.2021.732256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Bahadur Gurung A, Ajmal Ali M, Lee J, Abul Farah M, Mashay Al-Anazi K, Al-Hemaid F. Identification of SARS-CoV-2 inhibitors from extracts of Houttuynia cordata Thunb. Saudi J Biol Sci 2021;28:7517-27. [PMID: 34512097 DOI: 10.1016/j.sjbs.2021.08.100] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
50 Salama ME, Suzan AR, Ayat F, Sarah SH, Muhammed RS, Noran MT, Heba M, Mohamed A. Medicinal plant-derived compounds as potential phytotherapy forCOVID-19: Future perspectives. J Pharmacognosy Phytother 2021;13:68-81. [DOI: 10.5897/jpp2021.0603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Chandramouli V, Niraj SK, Nair KG, Joseph J, Aruni W. Phytomolecules Repurposed as Covid-19 Inhibitors: Opportunity and Challenges. Curr Microbiol 2021;78:3620-33. [PMID: 34448061 DOI: 10.1007/s00284-021-02639-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
52 Skrajnowska D, Brumer M, Kankowska S, Matysek M, Miazio N, Bobrowska-Korczak B. Covid 19: Diet Composition and Health. Nutrients 2021;13:2980. [PMID: 34578858 DOI: 10.3390/nu13092980] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
53 Ogunrinola OO, Kanmodi RI, Ogunrinola OA. Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus. Food Frontiers 2022;3:83-95. [DOI: 10.1002/fft2.107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Chan SM, Khoo KS, Sekaran SD, Sit NW. Mode-Dependent Antiviral Activity of Medicinal Plant Extracts against the Mosquito-Borne Chikungunya Virus. Plants (Basel) 2021;10:1658. [PMID: 34451702 DOI: 10.3390/plants10081658] [Reference Citation Analysis]
55 Feitoza Pires EC, da Silva FP, Schallenberger K, Hermann BS, Mallmann L, dos Santos AG, Moura WS, de Oliveira EE, Smagghe G, Ascêncio SD, Santos Barbosa RD, Mendes I, Fleck JD, Ribeiro BM, de Souza Aguiar RW. Preliminary analysis of a neotropical plant extract antiviral potential against Chikungunya and Mayaro viruses.. [DOI: 10.1101/2021.08.04.455105] [Reference Citation Analysis]
56 Zhang J, Bai Q, Bian Y. Quality Appraisal of the Pharmacoeconomic Research Literature about Antivirals: A Comparison between Chinese Medicine and Non-Chinese Medicine. Evid Based Complement Alternat Med 2021;2021:5537435. [PMID: 34335816 DOI: 10.1155/2021/5537435] [Reference Citation Analysis]
57 Sun ZC, Chen C, Xu FF, Li BK, Shen JL, Wang T, Jiang HF, Wang GX. Evaluation of the antiviral activity of naringenin, a major constituent of Typha angustifolia, against white spot syndrome virus in crayfish Procambarus clarkii. J Fish Dis 2021. [PMID: 34227114 DOI: 10.1111/jfd.13472] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
58 Llivisaca-Contreras SA, Naranjo-Morán J, Pino-Acosta A, Pieters L, Vanden Berghe W, Manzano P, Vargas-Pérez J, León-Tamariz F, Cevallos-Cevallos JM. Plants and Natural Products with Activity against Various Types of Coronaviruses: A Review with Focus on SARS-CoV-2. Molecules 2021;26:4099. [PMID: 34279439 DOI: 10.3390/molecules26134099] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
59 Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabol Open 2021;11:100103. [PMID: 34222852 DOI: 10.1016/j.metop.2021.100103] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
60 Rana S, Kumar P, Sharma A, Sharma S, Giri R, S. Ghosh K. Identification of Naturally Occurring Antiviral Molecules for SARS-CoV-2 Mitigation. TOCOVIDJ 2021;1:38-46. [DOI: 10.2174/2666958702101010038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Abou Baker DH, Amarowicz R, Kandeil A, Ali MA, Ibrahim EA. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J Agric Food Res 2021;4:100135. [PMID: 36570026 DOI: 10.1016/j.jafr.2021.100135] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
62 Sellaoui L, Badawi M, Monari A, Tatarchuk T, Jemli S, Luiz Dotto G, Bonilla-Petriciolet A, Chen Z. Make it clean, make it safe: A review on virus elimination via adsorption. Chem Eng J 2021;412:128682. [PMID: 33776550 DOI: 10.1016/j.cej.2021.128682] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
63 Singh R, Singh PK, Kumar R, Kabir MT, Kamal MA, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM, Uddin MS. Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Front Pharmacol 2021;12:652335. [PMID: 34054532 DOI: 10.3389/fphar.2021.652335] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
64 Williams A, Scally G, Langland J. A topical botanical therapy for the treatment of canine papilloma virus associated oral warts: A case series. Advances in Integrative Medicine 2021;8:151-154. [DOI: 10.1016/j.aimed.2020.12.003] [Reference Citation Analysis]
65 Gómez-García M, Puente H, Argüello H, Mencía-Ares Ó, Rubio P, Carvajal A. In vitro Assessment of Antiviral Effect of Natural Compounds on Porcine Epidemic Diarrhea Coronavirus. Front Vet Sci 2021;8:652000. [PMID: 33855058 DOI: 10.3389/fvets.2021.652000] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Balkrishna A, Haldar S, Singh H, Roy P, Varshney A. Coronil, a Tri-Herbal Formulation, Attenuates Spike-Protein-Mediated SARS-CoV-2 Viral Entry into Human Alveolar Epithelial Cells and Pro-Inflammatory Cytokines Production by Inhibiting Spike Protein-ACE-2 Interaction. J Inflamm Res 2021;14:869-84. [PMID: 33758527 DOI: 10.2147/JIR.S298242] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
67 De Pellegrin ML, Rohrhofer A, Schuster P, Schmidt B, Peterburs P, Gessner A. The potential of herbal extracts to inhibit SARS-CoV-2: a pilot study. Clin Phytosci 2021;7. [DOI: 10.1186/s40816-021-00264-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
68 Ogundajo AL, Ewekeye T, Sharaibi OJ, Owolabi MS, Dosoky NS, Setzer WN. Antimicrobial Activities of Sesquiterpene-Rich Essential Oils of Two Medicinal Plants, Lannea egregia and Emilia sonchifolia, from Nigeria. Plants (Basel) 2021;10:488. [PMID: 33807551 DOI: 10.3390/plants10030488] [Reference Citation Analysis]
69 Kshirsagar SG, Rao RV. Antiviral and Immunomodulation Effects of Artemisia. Medicina (Kaunas) 2021;57:217. [PMID: 33673527 DOI: 10.3390/medicina57030217] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
70 Majumdar S, Verma R, Saha A, Bhattacharyya P, Maji P, Surjit M, Kundu M, Basu J, Saha S. Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Front Genet 2021;12:637362. [PMID: 33664772 DOI: 10.3389/fgene.2021.637362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021;35:3447-83. [PMID: 33590931 DOI: 10.1002/ptr.7039] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
72 Patel B, Sharma S, Nair N, Majeed J, Goyal RK, Dhobi M. Therapeutic opportunities of edible antiviral plants for COVID-19. Mol Cell Biochem 2021;476:2345-64. [PMID: 33587232 DOI: 10.1007/s11010-021-04084-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
73 Ali SG, Ansari MA, Alzohairy MA, Almatroudi A, Alomary MN, Alghamdi S, Rehman S, Khan HM. Natural Products and Nutrients against Different Viral Diseases: Prospects in Prevention and Treatment of SARS-CoV-2. Medicina (Kaunas) 2021;57. [PMID: 33673004 DOI: 10.3390/medicina57020169] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
74 Shohag MJI, Khan FZ, Tang L, Wei Y, He Z, Yang X. COVID-19 Crisis: How Can Plant Biotechnology Help? Plants (Basel) 2021;10:352. [PMID: 33673316 DOI: 10.3390/plants10020352] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
75 Kumari S, Chatterjee K. Biomaterials-based formulations and surfaces to combat viral infectious diseases. APL Bioeng 2021;5:011503. [PMID: 33598595 DOI: 10.1063/5.0029486] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
76 Du A, Zheng R, Disoma C, Li S, Chen Z, Li S, Liu P, Zhou Y, Shen Y, Liu S, Zhang Y, Dong Z, Yang Q, Alsaadawe M, Razzaq A, Peng Y, Chen X, Hu L, Peng J, Zhang Q, Jiang T, Mo L, Li S, Xia Z. Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 2021;176:1-12. [PMID: 33548314 DOI: 10.1016/j.ijbiomac.2021.02.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 23.5] [Reference Citation Analysis]
77 Tuli HS, Sood S, Kaur J, Kumar P, Seth P, Punia S, Yadav P, Sharma AK, Aggarwal D, Sak K. Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements. 3 Biotech 2021;11:110. [PMID: 33552835 DOI: 10.1007/s13205-021-02644-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Sytar O, Brestic M, Hajihashemi S, Skalicky M, Kubeš J, Lamilla-Tamayo L, Ibrahimova U, Ibadullayeva S, Landi M. COVID-19 Prophylaxis Efforts Based on Natural Antiviral Plant Extracts and Their Compounds. Molecules 2021;26:727. [PMID: 33573318 DOI: 10.3390/molecules26030727] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
79 Bhattacharya R, Dev K, Sourirajan A. Antiviral activity of bioactive phytocompounds against coronavirus: An update. J Virol Methods 2021;290:114070. [PMID: 33497729 DOI: 10.1016/j.jviromet.2021.114070] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
80 Chaachouay N, Douira A, Zidane L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur J Integr Med 2021;42:101285. [PMID: 33520016 DOI: 10.1016/j.eujim.2021.101285] [Cited by in Crossref: 24] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
81 Thi LP, Panchangam SC, Do H, Nguyen V. Prospects and challenges of photocatalysis for degradation and mineralization of antiviral drugs. Nanostructured Photocatalysts 2021. [DOI: 10.1016/b978-0-12-823007-7.00012-2] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Saleh MSM, Kamisah Y. Potential Medicinal Plants for the Treatment of Dengue Fever and Severe Acute Respiratory Syndrome-Coronavirus. Biomolecules 2020;11:42. [PMID: 33396926 DOI: 10.3390/biom11010042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
83 Khan T, Khan MA, Mashwani ZU, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal Agric Biotechnol 2021;31:101890. [PMID: 33520034 DOI: 10.1016/j.bcab.2020.101890] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
84 Khurm M, Wang X, Zhang H, Hussain SN, Qaisar MN, Hayat K, Saqib F, Zhang X, Zhan G, Guo Z. The genus Cassia L.: Ethnopharmacological and phytochemical overview. Phytother Res 2020. [PMID: 33617115 DOI: 10.1002/ptr.6954] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
85 Yi M, Lin S, Zhang B, Jin H, Ding L. Antiviral potential of natural products from marine microbes. Eur J Med Chem 2020;207:112790. [PMID: 32937282 DOI: 10.1016/j.ejmech.2020.112790] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
86 Marinov R, Markova N, Krumova S, Yotovska K, Zaharieva MM, Genova-kalou P. Antiviral properties of chalcones and their synthetic derivatives: a mini review. PHAR 2020;67:325-37. [DOI: 10.3897/pharmacia.67.e53842] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
87 Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 2021;267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
88 Mori M, Ciaco S, Mély Y, Karioti A. Inhibitory Effect of Lithospermic Acid on the HIV-1 Nucleocapsid Protein. Molecules 2020;25:E5434. [PMID: 33233563 DOI: 10.3390/molecules25225434] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
89 Huang A, Tan X, Cui H, Qi X, Zhu B, Wang G. Antiviral activity of geniposidic acid against white spot syndrome virus replication in red swamp crayfish Procambarus clarkii. Aquaculture 2020;528:735533. [DOI: 10.1016/j.aquaculture.2020.735533] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
90 Charan J, Bhardwaj P, Dutta S, Kaur R, Bist SK, Detha MD, Kanchan T, Yadav D, Mitra P, Sharma P. Use of Complementary and Alternative Medicine (CAM) and Home Remedies by COVID-19 Patients: A Telephonic Survey. Indian J Clin Biochem 2020;:1-4. [PMID: 33162692 DOI: 10.1007/s12291-020-00931-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
91 Yepes-Pérez AF, Herrera-Calderon O, Quintero-Saumeth J. Uncaria tomentosa (cat's claw): a promising herbal medicine against SARS-CoV-2/ACE-2 junction and SARS-CoV-2 spike protein based on molecular modeling. J Biomol Struct Dyn 2020;:1-17. [PMID: 33118480 DOI: 10.1080/07391102.2020.1837676] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
92 Liang B. Structures of the Mononegavirales Polymerases. J Virol 2020;94:e00175-20. [PMID: 32847861 DOI: 10.1128/JVI.00175-20] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
93 Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, Sharma A, Ahmad A, Bhardwaj R, Ahmad P. Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine 2021;85:153361. [PMID: 33485605 DOI: 10.1016/j.phymed.2020.153361] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 16.3] [Reference Citation Analysis]
94 Ekalu A, Habila JD. Phytochemistry, pharmacology and medicinal uses of Cola (Malvaceae) family: a review. Med Chem Res 2020;29:2089-105. [DOI: 10.1007/s00044-020-02637-x] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
95 Kandwal S, Fayne D. Repurposing drugs for treatment of SARS-CoV-2 infection: computational design insights into mechanisms of action. J Biomol Struct Dyn 2020;:1-15. [PMID: 32964805 DOI: 10.1080/07391102.2020.1825232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
96 Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MIM, Badraoui R, Snoussi M, Adnan M. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. Plants (Basel) 2020;9:E1244. [PMID: 32967179 DOI: 10.3390/plants9091244] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
97 Zitterl-Eglseer K, Marschik T. Antiviral Medicinal Plants of Veterinary Importance: A Literature Review. Planta Med 2020;86:1058-72. [PMID: 32777833 DOI: 10.1055/a-1224-6115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
98 Muthuramalingam P, Jeyasri R, Valliammai A, Selvaraj A, Karthika C, Gowrishankar S, Pandian SK, Ramesh M, Chen JT. Global multi-omics and systems pharmacological strategy unravel the multi-targeted therapeutic potential of natural bioactive molecules against COVID-19: An in silico approach. Genomics 2020;112:4486-504. [PMID: 32771622 DOI: 10.1016/j.ygeno.2020.08.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
99 Fakhar Z, Faramarzi B, Pacifico S, Faramarzi S. Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic. Journal of Biomolecular Structure and Dynamics 2021;39:6171-83. [DOI: 10.1080/07391102.2020.1801510] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
100 Stange R, Uehleke B. Covid-19: Überlegungen zu Voraussetzungen von phytotherapeutischen Empfehlungen. Zeitschrift für Phytotherapie 2020;41:160-164. [DOI: 10.1055/a-1102-1740] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 da Mata ECG, Ombredane A, Joanitti GA, Kanzaki LIB, Schwartz EF. Antiretroviral and cytotoxic activities of Tityus obscurus synthetic peptide. Arch Pharm (Weinheim) 2020;353:e2000151. [PMID: 32686134 DOI: 10.1002/ardp.202000151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
102 Chikhale RV, Gurav SS, Patil RB, Sinha SK, Prasad SK, Shakya A, Shrivastava SK, Gurav NS, Prasad RS. Sars-cov-2 host entry and replication inhibitors from Indian ginseng: an in-silico approach. J Biomol Struct Dyn 2021;39:4510-21. [PMID: 32568012 DOI: 10.1080/07391102.2020.1778539] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 15.3] [Reference Citation Analysis]
103 Jahan I, Onay A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk J Biol 2020;44:228-41. [PMID: 32595359 DOI: 10.3906/biy-2005-114] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 14.7] [Reference Citation Analysis]
104 Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn 2021;39:4111-21. [PMID: 32462988 DOI: 10.1080/07391102.2020.1774419] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 18.0] [Reference Citation Analysis]
105 Garcia-Oliveira P, Fraga-Corral M, Pereira AG, Lourenço-Lopes C, Jimenez-Lopez C, Prieto MA, Simal-Gandara J. Scientific basis for the industrialization of traditionally used plants of the Rosaceae family. Food Chem 2020;330:127197. [PMID: 32540521 DOI: 10.1016/j.foodchem.2020.127197] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
106 Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease 2020;31:179-93. [PMID: 32656311 DOI: 10.1007/s13337-020-00598-8] [Cited by in Crossref: 85] [Cited by in F6Publishing: 71] [Article Influence: 28.3] [Reference Citation Analysis]
107 Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R. Phytochemicals as Antiviral Agents: Recent Updates. In: Swamy MK, editor. Plant-derived Bioactives. Singapore: Springer; 2020. pp. 279-95. [DOI: 10.1007/978-981-15-1761-7_12] [Cited by in Crossref: 37] [Cited by in F6Publishing: 7] [Article Influence: 12.3] [Reference Citation Analysis]
108 Salman S, Shah FH, Idrees J, Idrees F, Velagala S, Ali J, Khan AA. Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-CoV-2 inhibitors. Future Virology 2020;15:267-75. [DOI: 10.2217/fvl-2020-0079] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
109 Wink M. Potential of DNA Intercalating Alkaloids and Other Plant Secondary Metabolites against SARS-CoV-2 Causing COVID-19. Diversity 2020;12:175. [DOI: 10.3390/d12050175] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 14.0] [Reference Citation Analysis]
110 Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. Sci Total Environ 2020;725:138277. [PMID: 32278175 DOI: 10.1016/j.scitotenv.2020.138277] [Cited by in Crossref: 334] [Cited by in F6Publishing: 361] [Article Influence: 111.3] [Reference Citation Analysis]
111 Krishna CM, Kolla JN, Asha S, Reddy TSK. In vitro anti-HIV-1 activity of ethyl gallate. Virusdisease 2020;31:22-7. [PMID: 32206695 DOI: 10.1007/s13337-019-00562-1] [Reference Citation Analysis]
112 Roumy V, Ruiz L, Ruiz Macedo JC, Gutierrez-Choquevilca AL, Samaillie J, Encinas LA, Mesia WR, Ricopa Cotrina HE, Rivière C, Sahpaz S, Bordage S, Garçon G, Dubuisson J, Anthérieu S, Seron K, Hennebelle T. Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. J Ethnopharmacol 2020;255:112735. [PMID: 32147478 DOI: 10.1016/j.jep.2020.112735] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
113 Álvarez DM, Castillo E, Duarte LF, Arriagada J, Corrales N, Farías MA, Henríquez A, Agurto-Muñoz C, González PA. Current Antivirals and Novel Botanical Molecules Interfering With Herpes Simplex Virus Infection. Front Microbiol 2020;11:139. [PMID: 32117158 DOI: 10.3389/fmicb.2020.00139] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
114 Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research 2020;34:742-68. [DOI: 10.1002/ptr.6575] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 16.8] [Reference Citation Analysis]
115 Sunarić S, Pavlović D, Stanković M, Živković J, Arsić I. Riboflavin and thiamine content in extracts of wild-grown plants for medicinal and cosmetic use. Chem Pap 2020;74:1729-38. [DOI: 10.1007/s11696-019-01017-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
116 Kim DE, Min JS, Jang MS, Lee JY, Shin YS, Song JH, Kim HR, Kim S, Jin YH, Kwon S. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019;9:E696. [PMID: 31690059 DOI: 10.3390/biom9110696] [Cited by in Crossref: 142] [Cited by in F6Publishing: 149] [Article Influence: 35.5] [Reference Citation Analysis]
117 Papadi G, Wesseling S, Troganis AN, Vervoort J, Rietjens IMCM. Induction of EpRE-mediated gene expression by a series of mediterranean botanicals and their constituents. J Ethnopharmacol 2019;240:111940. [PMID: 31071423 DOI: 10.1016/j.jep.2019.111940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
118 Karbalaei M, Keikha M. Curcumin as an Herbal Inhibitor Candidate Against HTLV-1 Protease. Jentashapir J Health Res 2019;10. [DOI: 10.5812/jjhr.92813] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
119 Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia 2019;29:504-28. [DOI: 10.1016/j.bjp.2018.10.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
120 Islam MT, Zihad SMNK, Rahman MS, Sifat N, Khan MR, Uddin SJ, Rouf R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB Life 2019;71:1192-200. [DOI: 10.1002/iub.2053] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
121 Roa-Linares VC, Miranda-Brand Y, Tangarife-Castaño V, Ochoa R, García PA, Castro MÁ, Betancur-Galvis L, San Feliciano A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules 2019;24:E1279. [PMID: 30986933 DOI: 10.3390/molecules24071279] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
122 Odimegwu DC, Ngwoke K, Ejikeugwu C, Esimone CO. Lichen Secondary Metabolites as Possible Antiviral Agents. Lichen Secondary Metabolites 2019. [DOI: 10.1007/978-3-030-16814-8_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
123 Silveira Rabelo AC, Caldeira Costa D. A review of biological and pharmacological activities of Baccharis trimera. Chemico-Biological Interactions 2018;296:65-75. [DOI: 10.1016/j.cbi.2018.09.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
124 Zhang W, Xiao X, Peng C, Chen W, Xie S, Wang D. Sodium tanshinone IIA sulfate protects myocardium against paraquat-induced toxicity through activating the Nrf2 signaling pathway in rats. Hum Exp Toxicol 2019;38:247-54. [DOI: 10.1177/0960327118792051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
125 Živković I, Šavikin K, Zdunić G, Živković J, Bigović D, Menković N, Radin D. Antiviral activity of medicinal plants extracts against foodborne norovirus. Lekovite sirovine 2018. [DOI: 10.5937/leksir1838031z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]