BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ger RB, Yang J, Ding Y, Jacobsen MC, Fuller CD, Howell RM, Li H, Jason Stafford R, Zhou S, Court LE. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 2017;44:5153-61. [PMID: 28622410 DOI: 10.1002/mp.12406] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Liang J, Xiao K, Gao G. A depth-colour image registration method based on local feature point extraction. Biosystems Engineering 2022;219:268-80. [DOI: 10.1016/j.biosystemseng.2022.05.008] [Reference Citation Analysis]
2 Qin A, Chen S, Liang J, Snyder M, Yan D. Evaluation of DIR schemes on tumor/organ with progressive shrinkage: accuracy of tumor/organ internal tissue tracking during the radiation treatment. Radiother Oncol 2022:S0167-8140(22)04145-7. [PMID: 35667570 DOI: 10.1016/j.radonc.2022.05.039] [Reference Citation Analysis]
3 Bäumer C, Frakulli R, Kohl J, Nagaraja S, Steinmeier T, Worawongsakul R, Timmermann B. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers (Basel) 2022;14:2616. [PMID: 35681594 DOI: 10.3390/cancers14112616] [Reference Citation Analysis]
4 Lim SY, Tran A, Tran ANK, Sobremonte A, Fuller CD, Simmons L, Yang J. Dose accumulation of daily adaptive plans to decide optimal plan adaptation strategy for head-and-neck patients treated with MR-Linac. Med Dosim 2021:S0958-3947(21)00080-7. [PMID: 34756493 DOI: 10.1016/j.meddos.2021.08.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ishida T, Kadoya N, Tanabe S, Ohashi H, Nemoto H, Dobashi S, Takeda K, Jingu K. Evaluation of performance of pelvic CT-MR deformable image registration using two software programs. J Radiat Res 2021:rrab078. [PMID: 34505155 DOI: 10.1093/jrr/rrab078] [Reference Citation Analysis]
6 Zhao Y, Rhee DJ, Cardenas C, Court LE, Yang J. Training deep-learning segmentation models from severely limited data. Med Phys 2021;48:1697-706. [PMID: 33474727 DOI: 10.1002/mp.14728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
7 Qian P, Zheng J, Zheng Q, Liu Y, Wang T, Al Helo R, Baydoun A, Avril N, Ellis RJ, Friel H, Traughber MS, Devaraj A, Traughber B, Muzic RF. Transforming UTE-mDixon MR Abdomen-Pelvis Images Into CT by Jointly Leveraging Prior Knowledge and Partial Supervision. IEEE/ACM Trans Comput Biol Bioinform 2021;18:70-82. [PMID: 32175868 DOI: 10.1109/TCBB.2020.2979841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Baydoun A, Xu KE, Heo JU, Yang H, Zhou F, Bethell LA, Fredman ET, Ellis RJ, Podder TK, Traughber MS, Paspulati RM, Qian P, Traughber BJ, Muzic RF. Synthetic CT Generation of the Pelvis in Patients With Cervical Cancer: A Single Input Approach Using Generative Adversarial Network. IEEE Access 2021;9:17208-21. [PMID: 33747682 DOI: 10.1109/access.2021.3049781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yang J, Vedam S, Lee B, Castillo P, Sobremonte A, Hughes N, Mohammedsaid M, Wang J, Choi S. Online adaptive planning for prostate stereotactic body radiotherapy using a 1.5 Tesla magnetic resonance imaging-guided linear accelerator. Phys Imaging Radiat Oncol 2021;17:20-4. [PMID: 33898773 DOI: 10.1016/j.phro.2020.12.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
10 Mittauer KE, Hill PM, Bassetti MF, Bayouth JE. Validation of an MR-guided online adaptive radiotherapy (MRgoART) program: Deformation accuracy in a heterogeneous, deformable, anthropomorphic phantom. Radiotherapy and Oncology 2020;146:97-109. [DOI: 10.1016/j.radonc.2020.02.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wu RY, Liu AY, Yang J, Williamson TD, Wisdom PG, Bronk L, Gao S, Grosshan DR, Fuller DC, Gunn GB, Ronald Zhu X, Frank SJ. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys 2020;21:166-73. [PMID: 31808307 DOI: 10.1002/acm2.12789] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yu H, Oliver M, Leszczynski K, Lee Y, Karam I, Sahgal A. Tissue segmentation-based electron density mapping for MR-only radiotherapy treatment planning of brain using conventional T1-weighted MR images. J Appl Clin Med Phys 2019;20:11-20. [PMID: 31257709 DOI: 10.1002/acm2.12654] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Su KH, Friel HT, Kuo JW, Al Helo R, Baydoun A, Stehning C, Crisan AN, Traughber MS, Devaraj A, Jordan DW, Qian P, Leisser A, Ellis RJ, Herrmann KA, Avril N, Traughber BJ, Muzic RF Jr. UTE-mDixon-based thorax synthetic CT generation. Med Phys 2019;46:3520-31. [PMID: 31063248 DOI: 10.1002/mp.13574] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
14 Chetty IJ, Rosu-Bubulac M. Deformable Registration for Dose Accumulation. Semin Radiat Oncol 2019;29:198-208. [PMID: 31027637 DOI: 10.1016/j.semradonc.2019.02.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 40] [Article Influence: 10.3] [Reference Citation Analysis]
15 Heukelom J, Fuller CD. Head and Neck Cancer Adaptive Radiation Therapy (ART): Conceptual Considerations for the Informed Clinician. Semin Radiat Oncol 2019;29:258-73. [PMID: 31027643 DOI: 10.1016/j.semradonc.2019.02.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
16 Wu RY, Liu AY, Wisdom P, Zhu XR, Frank SJ, Fuller CD, Gunn GB, Palmer MB, Wages CA, Gillin MT, Yang J. Characterization of a new physical phantom for testing rigid and deformable image registration. J Appl Clin Med Phys 2019;20:145-53. [PMID: 30580471 DOI: 10.1002/acm2.12514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
17 Ger RB, Yang J, Ding Y, Jacobsen MC, Cardenas CE, Fuller CD, Howell RM, Li H, Stafford RJ, Zhou S, Court LE. Synthetic head and neck and phantom images for determining deformable image registration accuracy in magnetic resonance imaging. Med Phys 2018. [PMID: 30007075 DOI: 10.1002/mp.13090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
18 Boda-Heggemann J, Jahnke A, Chan MKH, Ghaderi Ardekani LS, Hunold P, Schäfer JP, Huttenlocher S, Wurster S, Rades D, Hildebrandt G, Lohr F, Dunst J, Wenz F, Blanck O. Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther Onkol 2018;194:414-24. [PMID: 29404626 DOI: 10.1007/s00066-018-1271-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]