BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2018;38:1295-331. [PMID: 29149530 DOI: 10.1002/med.21475] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 10.6] [Reference Citation Analysis]
Number Citing Articles
1 Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, Cioffi N. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials (Basel) 2020;10:E802. [PMID: 32326343 DOI: 10.3390/nano10040802] [Cited by in Crossref: 81] [Cited by in F6Publishing: 61] [Article Influence: 40.5] [Reference Citation Analysis]
2 Hulsebosch BM, Mounce BC. Polyamine Analog Diethylnorspermidine Restricts Coxsackievirus B3 and Is Overcome by 2A Protease Mutation In Vitro. Viruses 2021;13:310. [PMID: 33669273 DOI: 10.3390/v13020310] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, Hogan RJ, Tripp RA, Pegan SD. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infect Dis 2020;6:2099-109. [PMID: 32428392 DOI: 10.1021/acsinfecdis.0c00168] [Cited by in Crossref: 102] [Cited by in F6Publishing: 91] [Article Influence: 51.0] [Reference Citation Analysis]
4 Pitsillou E, Liang J, Karagiannis C, Ververis K, Darmawan KK, Ng K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput Biol Chem 2020;89:107408. [PMID: 33137690 DOI: 10.1016/j.compbiolchem.2020.107408] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
5 Agbowuro AA, Hwang J, Peel E, Mazraani R, Springwald A, Marsh JW, Mccaughey L, Gamble AB, Huston WM, Tyndall JD. Structure-activity analysis of peptidic Chlamydia HtrA inhibitors. Bioorganic & Medicinal Chemistry 2019;27:4185-99. [DOI: 10.1016/j.bmc.2019.07.049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
6 Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. CMC 2020;27:2514-49. [DOI: 10.2174/0929867325666181113122900] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 K Konstantinidou S, P Papanastasiou I. Repurposing current therapeutic regimens against SARS-CoV-2 (Review). Exp Ther Med 2020;20:1845-55. [PMID: 32782493 DOI: 10.3892/etm.2020.8905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Dawadi S, Simmons N, Miklossy G, Bohren KM, Faver JC, Ucisik MN, Nyshadham P, Yu Z, Matzuk MM. Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Proc Natl Acad Sci U S A 2020;117:16782-9. [PMID: 32641511 DOI: 10.1073/pnas.2005447117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
9 Ullrich S, Sasi VM, Mahawaththa MC, Ekanayake KB, Morewood R, George J, Shuttleworth L, Zhang X, Whitefield C, Otting G, Jackson C, Nitsche C. Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorg Med Chem Lett 2021;50:128333. [PMID: 34418570 DOI: 10.1016/j.bmcl.2021.128333] [Reference Citation Analysis]
10 Peres-da-Silva A, Antunes D, Quintanilha Torres AL, Caffarena ER, Lampe E. Effects of the Q80K Polymorphism on the Physicochemical Properties of Hepatitis C Virus Subtype 1a NS3 Protease. Viruses 2019;11:E691. [PMID: 31366046 DOI: 10.3390/v11080691] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Ezawa T, Saito R, Suzuki S, Sugiyama S, Sylte I, Kurita N. Protonation states of central amino acids in a zinc metalloprotease complexed with inhibitor: Molecular mechanics optimizations and ab initio molecular orbital calculations. Biophys Chem 2020;261:106368. [PMID: 32272264 DOI: 10.1016/j.bpc.2020.106368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2021;:102899. [PMID: 34630635 DOI: 10.1016/j.jddst.2021.102899] [Reference Citation Analysis]
13 Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. Adv Exp Med Biol 2021;1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Reference Citation Analysis]
14 Marrero-Hernández S, Márquez-Arce D, Cabrera-Rodríguez R, Estévez-Herrera J, Pérez-Yanes S, Barroso-González J, Madrid R, Machado JD, Blanco J, Valenzuela-Fernández A. HIV-1 Nef Targets HDAC6 to Assure Viral Production and Virus Infection. Front Microbiol 2019;10:2437. [PMID: 31736889 DOI: 10.3389/fmicb.2019.02437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ağagündüz D, Çelik MN, Çıtar Dazıroğlu ME, Capasso R. Emergent Drug and Nutrition Interactions in COVID-19: A Comprehensive Narrative Review. Nutrients 2021;13:1550. [PMID: 34064534 DOI: 10.3390/nu13051550] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Florin-Christensen M, Wieser SN, Suarez CE, Schnittger L. In Silico Survey and Characterization of Babesia microti Functional and Non-Functional Proteases. Pathogens 2021;10:1457. [PMID: 34832610 DOI: 10.3390/pathogens10111457] [Reference Citation Analysis]
17 Ullrich S, Ekanayake KB, Otting G, Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg Med Chem Lett 2022;62:128629. [PMID: 35182772 DOI: 10.1016/j.bmcl.2022.128629] [Reference Citation Analysis]
18 Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021;53:1647-68. [PMID: 34782737 DOI: 10.1038/s12276-021-00691-y] [Reference Citation Analysis]
19 Sreelatha L, Malakar S, Songprakhon P, Morchang A, Srisawat C, Noisakran S, Yenchitosomanus P, Limjindaporn T. Serine protease inhibitor AEBSF reduces dengue virus infection via decreased cholesterol synthesis. Virus Research 2019;271:197672. [DOI: 10.1016/j.virusres.2019.197672] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol 2022;13:876370. [DOI: 10.3389/fendo.2022.876370] [Reference Citation Analysis]
21 Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021;104:107851. [PMID: 33556646 DOI: 10.1016/j.jmgm.2021.107851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hasan M, Parvez MSA, Azim KF, Imran MAS, Raihan T, Gulshan A, Muhit S, Akhand RN, Ahmed SSU, Uddin MB. Main protease inhibitors and drug surface hotspots for the treatment of COVID-19: A drug repurposing and molecular docking approach. Biomed Pharmacother 2021;140:111742. [PMID: 34052565 DOI: 10.1016/j.biopha.2021.111742] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Jo S, Kim S, Yoo J, Kim MS, Shin DH. A Study of 3CLpros as Promising Targets against SARS-CoV and SARS-CoV-2. Microorganisms 2021;9:756. [PMID: 33916747 DOI: 10.3390/microorganisms9040756] [Reference Citation Analysis]
24 Vandyck K, Abdelnabi R, Gupta K, Jochmans D, Jekle A, Deval J, Misner D, Bardiot D, Foo CS, Liu C, Ren S, Beigelman L, Blatt LM, Boland S, Vangeel L, Dejonghe S, Chaltin P, Marchand A, Serebryany V, Stoycheva A, Chanda S, Symons JA, Raboisson P, Neyts J. ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model. Biochem Biophys Res Commun 2021;555:134-9. [PMID: 33813272 DOI: 10.1016/j.bbrc.2021.03.096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
25 Liang J, Pitsillou E, Burbury L, Hung A, Karagiannis TC. In silico investigation of potential small molecule inhibitors of the SARS-CoV-2 nsp10-nsp16 methyltransferase complex. Chem Phys Lett 2021;774:138618. [PMID: 33850334 DOI: 10.1016/j.cplett.2021.138618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020;30:127377. [PMID: 32738988 DOI: 10.1016/j.bmcl.2020.127377] [Cited by in Crossref: 147] [Cited by in F6Publishing: 120] [Article Influence: 73.5] [Reference Citation Analysis]
27 Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 2021;11:428. [PMID: 34513551 DOI: 10.1007/s13205-021-02928-z] [Reference Citation Analysis]
28 Lockwood TD. Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn2+ to inhibit cysteinyl cathepsins: review and implications. Biometals 2019;32:575-93. [PMID: 31044334 DOI: 10.1007/s10534-019-00197-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Naeem M, Manzoor S, Abid M, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. JoF 2022;8:109. [DOI: 10.3390/jof8020109] [Reference Citation Analysis]
30 Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021;28:3152-9. [PMID: 33649700 DOI: 10.1016/j.sjbs.2021.02.059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog 2020;16:e1009013. [PMID: 33137165 DOI: 10.1371/journal.ppat.1009013] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
32 Kany AM, Sikandar A, Yahiaoui S, Haupenthal J, Walter I, Empting M, Köhnke J, Hartmann RW. Tackling Pseudomonas aeruginosa Virulence by a Hydroxamic Acid-Based LasB Inhibitor. ACS Chem Biol 2018;13:2449-55. [PMID: 30088919 DOI: 10.1021/acschembio.8b00257] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Liu F, Chen R, Song W, Li L, Lei C, Nie Z. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Anal Chem 2021;93:3517-25. [DOI: 10.1021/acs.analchem.0c04894] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
34 Haderer M, Neubert P, Rinner E, Scholtis A, Broncy L, Gschwendtner H, Kandulski A, Pavel V, Mehrl A, Brochhausen C, Schlosser S, Gülow K, Kunst C, Müller M. Novel pathomechanism for spontaneous bacterial peritonitis: disruption of cell junctions by cellular and bacterial proteases. Gut 2021:gutjnl-2020-321663. [PMID: 33707230 DOI: 10.1136/gutjnl-2020-321663] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Li A, Parsania C, Tan K, Todd RB, Wong KH. Co-option of an extracellular protease for transcriptional control of nutrient degradation in the fungus Aspergillus nidulans. Commun Biol 2021;4:1409. [PMID: 34921231 DOI: 10.1038/s42003-021-02925-1] [Reference Citation Analysis]
36 Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019;19:1571-98. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
37 Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021;11:607. [PMID: 33921886 DOI: 10.3390/biom11040607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Nova ICV, Moreira LR, Torres DJL, Oliveira KKDS, Patriota LLS, Coelho LCBB, Paiva PMG, Napoleão TH, Lorena VMB, Pontual EV. A Trypsin Inhibitor from Moringa oleifera Flowers Modulates the Immune Response In Vitro of Trypanosoma cruzi-Infected Human Cells. Antibiotics (Basel) 2020;9:E515. [PMID: 32823803 DOI: 10.3390/antibiotics9080515] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Gammeltoft KA, Zhou Y, Duarte Hernandez CR, Galli A, Offersgaard A, Costa R, Pham LV, Fahnøe U, Feng S, Scheel TKH, Ramirez S, Bukh J, Gottwein JM. Hepatitis C Virus Protease Inhibitors Show Differential Efficacy and Interactions with Remdesivir for Treatment of SARS-CoV-2 In Vitro. Antimicrob Agents Chemother 2021;65:e0268020. [PMID: 34097489 DOI: 10.1128/AAC.02680-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Slagman S, Fessner W. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021;50:1968-2009. [DOI: 10.1039/d0cs00763c] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 Tyndall JDA. S-217622, a 3CL Protease Inhibitor and Clinical Candidate for SARS-CoV-2. J Med Chem 2022. [PMID: 35507419 DOI: 10.1021/acs.jmedchem.2c00624] [Reference Citation Analysis]
42 Gonzalez-silvera D, Herrera M, Giráldez I, Esteban M. Effects of the Dietary Tryptophan and Aspartate on the Immune Response of Meagre (Argyrosomus regius) after Stress. Fishes 2018;3:6. [DOI: 10.3390/fishes3010006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
43 Mast FD, Navare AT, van der Sloot AM, Coulombe-Huntington J, Rout MP, Baliga NS, Kaushansky A, Chait BT, Aderem A, Rice CM, Sali A, Tyers M, Aitchison JD. Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. J Cell Biol 2020;219:e202006159. [PMID: 32785687 DOI: 10.1083/jcb.202006159] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
44 Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. Sensors (Basel) 2020;20:E5247. [PMID: 32937986 DOI: 10.3390/s20185247] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
45 Sobhia ME, Ghosh K, Sivangula S, Kumar S, Singh H. Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics. J Biomol Struct Dyn 2021;:1-11. [PMID: 33413032 DOI: 10.1080/07391102.2020.1867642] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Elseginy SA, Fayed B, Hamdy R, Mahrous N, Mostafa A, Almehdi AM, S M Soliman S. Promising anti-SARS-CoV-2 drugs by effective dual targeting against the viral and host proteases. Bioorg Med Chem Lett 2021;43:128099. [PMID: 33984473 DOI: 10.1016/j.bmcl.2021.128099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Meng B, Lan K, Xie J, Lerner RA, Wilson IA, Yang B. Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses. Proc Natl Acad Sci U S A 2020;117:13499-508. [PMID: 32467165 DOI: 10.1073/pnas.1918844117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Illa O, Olivares JA, Gaztelumendi N, Martínez-Castro L, Ospina J, Abengozar MÁ, Sciortino G, Maréchal JD, Nogués C, Royo M, Rivas L, Ortuño RM. Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti-Leishmania Drug Delivery Systems. Int J Mol Sci 2020;21:E7502. [PMID: 33053805 DOI: 10.3390/ijms21207502] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Gutierrez-Gongora D, Geddes-McAlister J. From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021;7:1016. [PMID: 34946998 DOI: 10.3390/jof7121016] [Reference Citation Analysis]
50 Unoh Y, Uehara S, Nakahara K, Nobori H, Yamatsu Y, Yamamoto S, Maruyama Y, Taoda Y, Kasamatsu K, Suto T, Kouki K, Nakahashi A, Kawashima S, Sanaki T, Toba S, Uemura K, Mizutare T, Ando S, Sasaki M, Orba Y, Sawa H, Sato A, Sato T, Kato T, Tachibana Y. Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. J Med Chem 2022. [PMID: 35352927 DOI: 10.1021/acs.jmedchem.2c00117] [Reference Citation Analysis]
51 Granato MQ, Sousa IS, Rosa TLSA, Gonçalves DS, Seabra SH, Alviano DS, Pessolani MCV, Santos ALS, Kneipp LF. Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction. J Enzyme Inhib Med Chem 2020;35:629-38. [PMID: 32037904 DOI: 10.1080/14756366.2020.1724994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O'Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. J Infect Dis 2021;224:S1-S21. [PMID: 34111271 DOI: 10.1093/infdis/jiab305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Hwang J, Strange N, Mazraani R, Phillips MJ, Gamble AB, Huston WM, Tyndall JDA. Design, synthesis and biological evaluation of P2-modified proline analogues targeting the HtrA serine protease in Chlamydia. Eur J Med Chem 2021;230:114064. [PMID: 35007862 DOI: 10.1016/j.ejmech.2021.114064] [Reference Citation Analysis]
54 Rakib A, Paul A, Chy MNU, Sami SA, Baral SK, Majumder M, Tareq AM, Amin MN, Shahriar A, Uddin MZ, Dutta M, Tallei TE, Emran TB, Simal-Gandara J. Biochemical and Computational Approach of Selected Phytocompounds from Tinospora crispa in the Management of COVID-19. Molecules 2020;25:E3936. [PMID: 32872217 DOI: 10.3390/molecules25173936] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
55 Gomes PS, Carneiro MPD, Machado PDA, de Andrade-neto VV, da Fonseca-martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-vidal V, Sodero ACR, De-simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. CIMB 2022;44:2089-106. [DOI: 10.3390/cimb44050141] [Reference Citation Analysis]
56 Ramos-Pinto L, Machado M, Calduch-Giner J, Pérez-Sánchez J, Dias J, Conceição LEC, Silva TS, Costas B. Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream (Sparus aurata) Immune Status. Animals (Basel) 2021;11:1193. [PMID: 33919381 DOI: 10.3390/ani11051193] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Guerreiro MR, Fernandes AR, Coroadinha AS. Evaluation of Structurally Distorted Split GFP Fluorescent Sensors for Cell-Based Detection of Viral Proteolytic Activity. Sensors (Basel) 2020;21:E24. [PMID: 33374523 DOI: 10.3390/s21010024] [Reference Citation Analysis]
58 Khan YD, Amin N, Hussain W, Rasool N, Khan SA, Chou KC. iProtease-PseAAC(2L): A two-layer predictor for identifying proteases and their types using Chou's 5-step-rule and general PseAAC. Anal Biochem 2020;588:113477. [PMID: 31654612 DOI: 10.1016/j.ab.2019.113477] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
59 Cao Z, Li W, Liu R, Li X, Li H, Liu L, Chen Y, Lv C, Liu Y. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed Pharmacother 2019;118:109340. [PMID: 31545284 DOI: 10.1016/j.biopha.2019.109340] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]