BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deirram N, Zhang C, Kermaniyan SS, Johnston APR, Such GK. pH‐Responsive Polymer Nanoparticles for Drug Delivery. Macromol Rapid Commun 2019;40:1800917. [DOI: 10.1002/marc.201800917] [Cited by in Crossref: 181] [Cited by in F6Publishing: 183] [Article Influence: 45.3] [Reference Citation Analysis]
Number Citing Articles
1 Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coordination Chemistry Reviews 2023;480:215027. [DOI: 10.1016/j.ccr.2023.215027] [Reference Citation Analysis]
2 Qu JB, Zhang XF, Zhang YB, Che HJ, Li GF, Li J, Wang X. Galactosylated Core-Shell Nanoparticles with pH/GSH Dual Sensitivity for Targeting Hepatocellular Carcinoma. ACS Macro Lett 2023;:201-7. [PMID: 36695919 DOI: 10.1021/acsmacrolett.2c00736] [Reference Citation Analysis]
3 Mondal A, Das S, Ali SM, Kolay S, Sengupta A, Molla MR. Bioderived Lipoic Acid-Based Dynamic Covalent Nanonetworks of Poly(disulfide)s: Enhanced Encapsulation Stability and Cancer Cell-Selective Delivery of Drugs. Bioconjug Chem 2023. [PMID: 36693213 DOI: 10.1021/acs.bioconjchem.2c00493] [Reference Citation Analysis]
4 Ma X, Zhang J, Javed M, Wu J, Hu Y, Yin S, Zhu Y, Wu W, Liu F. Chitosan based smart polymer composites: Fabrication and pH-Responsive behavior for bio-medical applications. Environ Res 2023;221:115286. [PMID: 36642127 DOI: 10.1016/j.envres.2023.115286] [Reference Citation Analysis]
5 Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. Nano Res 2023;:1-14. [PMID: 36618069 DOI: 10.1007/s12274-022-5252-z] [Reference Citation Analysis]
6 Xu Q, Lan X, Lin H, Xi Q, Wang M, Quan X, Yao G, Yu Z, Wang Y, Yu M. Tumor microenvironment-regulating nanomedicine design to fight multi-drug resistant tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2023;15:e1842. [PMID: 35989568 DOI: 10.1002/wnan.1842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pandita D, Vakar, Poonia N, Chaudhary G, Jain GK, Lather V, Khar RK. pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00004-0] [Reference Citation Analysis]
8 Zhao Z, Saiding Q, Cai Z, Cai M, Cui W. Ultrasound technology and biomaterials for precise drug therapy. Materials Today 2023. [DOI: 10.1016/j.mattod.2022.12.004] [Reference Citation Analysis]
9 Guillen SG, Parres-Gold J, Ruiz A, Lucsik E, Dao B, Hang TKL, Chang M, Garcia AO, Wang Y, Tian F. pH-Responsive Metal-Organic Framework Thin Film for Drug Delivery. Langmuir 2022;38:16014-23. [PMID: 36516863 DOI: 10.1021/acs.langmuir.2c02497] [Reference Citation Analysis]
10 Verma R, Kumar M. Development and Optimization of Methotrexate Encapsulated Polymeric Nanocarrier by Ionic Gelation Method and its Evaluations. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202203698] [Reference Citation Analysis]
11 Guzmán Rodríguez A, Sablón Carrazana M, Rodríguez Tanty C, Malessy MJA, Fuentes G, Cruz LJ. Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022;15. [PMID: 36612002 DOI: 10.3390/cancers15010004] [Reference Citation Analysis]
12 Selimovic A, Kara G, Denkbas EB. Magnetic gelatin nanoparticles as a biocompatible carrier system for small interfering RNA in human colorectal cancer: Synthesis, optimization, characterization, and cell viability studies. Materials Today Communications 2022;33:104616. [DOI: 10.1016/j.mtcomm.2022.104616] [Reference Citation Analysis]
13 Boddu A, Obireddy SR, Zhang D, Rao KSVK, Lai WF. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv 2022;29:2481-90. [PMID: 35912830 DOI: 10.1080/10717544.2022.2100512] [Reference Citation Analysis]
14 Ghitman J, Voicu SI. Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. Carbohydrate Polymer Technologies and Applications 2022. [DOI: 10.1016/j.carpta.2022.100266] [Reference Citation Analysis]
15 Yang G, Liu Y, Chen J, Ding J, Chen X. Self-Adaptive Nanomaterials for Rational Drug Delivery in Cancer Therapy. Acc Mater Res 2022. [DOI: 10.1021/accountsmr.2c00147] [Reference Citation Analysis]
16 Grebinyk A, Prylutska S, Grebinyk S, Ponomarenko S, Virych P, Chumachenko V, Kutsevol N, Prylutskyy Y, Ritter U, Frohme M. Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. Nanoscale Adv 2022;4:5077-88. [PMID: 36504750 DOI: 10.1039/d2na00353h] [Reference Citation Analysis]
17 Domiński A, Konieczny T, Godzierz M, Musioł M, Janeczek H, Foryś A, Domińska M, Pastuch-Gawołek G, Piotrowski T, Kurcok P. Co-Delivery of 8-Hydroxyquinoline Glycoconjugates and Doxorubicin by Supramolecular Hydrogel Based on α-Cyclodextrin and pH-Responsive Micelles for Enhanced Tumor Treatment. Pharmaceutics 2022;14. [PMID: 36432680 DOI: 10.3390/pharmaceutics14112490] [Reference Citation Analysis]
18 Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive Targeting of Tumors with Chemotherapy-Laden Nanoparticles: Progress and Challenges. Pharmaceutics 2022;14:2427. [DOI: 10.3390/pharmaceutics14112427] [Reference Citation Analysis]
19 Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022;14:2396. [DOI: 10.3390/pharmaceutics14112396] [Reference Citation Analysis]
20 Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-therapeutic nanomaterials: Applications in biology and medicine. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.11.007] [Reference Citation Analysis]
21 Ejeromedoghene O, Iseoluwa Orege J, Oderinde O, Obinwanne Okoye C, Alowakennu M, Otuosorochukwu Nnyia M, Fu G. Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Reference Citation Analysis]
22 Ren R, Lim C, Li S, Wang Y, Song J, Lin T, Muir BW, Hsu H, Shen H. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials 2022;12:3855. [DOI: 10.3390/nano12213855] [Reference Citation Analysis]
23 Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022;14:2346. [DOI: 10.3390/pharmaceutics14112346] [Reference Citation Analysis]
24 Rennick JJ, Nowell CJ, Pouton CW, Johnston APR. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. Nat Commun 2022;13:6023. [PMID: 36224168 DOI: 10.1038/s41467-022-33348-z] [Reference Citation Analysis]
25 Khosravani N, Ahmadi V, Kakanejadifard A, Adeli M. Thermoresponsive and antibacterial two-dimensional polyglycerol-interlocked-polynipam for targeted drug delivery. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00514-0] [Reference Citation Analysis]
26 Ocampo‐garcía B, Lara LA, Ferro‐flores G, Morales‐avila E, Isaac‐olivé K. Role of Nanotechnology in Biological Therapies. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch5] [Reference Citation Analysis]
27 Guo H, Liu Y, Wu N, Sun L, Yang W. Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202538] [Reference Citation Analysis]
28 Liu Y, Ke F, Li Y, Shi Y, Zhang Z, Chen Y. Emulsion confined block copolymer self-assembly: Recent progress and prospect. Nano Res . [DOI: 10.1007/s12274-022-4850-0] [Reference Citation Analysis]
29 Li S, Kim Y, Lee JW, Prausnitz MR. Microneedle patch tattoos. iScience 2022. [DOI: 10.1016/j.isci.2022.105014] [Reference Citation Analysis]
30 Gbian DL, Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022;10:2137. [DOI: 10.3390/biomedicines10092137] [Reference Citation Analysis]
31 Huang T, Peng L, Han Y, Wang D, He X, Wang J, Ou C. Lipid nanoparticle-based mRNA vaccines in cancers: Current advances and future prospects. Front Immunol 2022;13:922301. [DOI: 10.3389/fimmu.2022.922301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zhang H, Pan J, Wang T, Lai Y, Liu X, Chen F, Xu L, Qu X, Hu X, Yu H. Sequentially Activatable Polypeptide Nanoparticles for Combinatory Photodynamic Chemotherapy of Breast Cancer. ACS Appl Mater Interfaces 2022. [PMID: 36001127 DOI: 10.1021/acsami.2c09064] [Reference Citation Analysis]
33 Li J, Li Y, Zhong Z, Fu X, Li Z. One-pot self-assembly fabrication of chitosan coated hollow sphere for pH/ glutathione dual responsive drug delivery. Colloids Surf B Biointerfaces 2022;218:112773. [PMID: 36007312 DOI: 10.1016/j.colsurfb.2022.112773] [Reference Citation Analysis]
34 Li C, Li Y, Li G, Wu S. Functional Nanoparticles for Enhanced Cancer Therapy. Pharmaceutics 2022;14:1682. [PMID: 36015307 DOI: 10.3390/pharmaceutics14081682] [Reference Citation Analysis]
35 Yang Z, Zhou Z, Li Y, Zhu L, Chen J, Cheng J, Su J, Zhuang Z, Ning Z, Yu Q, Jiang N, Gan Z. Assessing the Potential of New Lignin-Based pH-Responsive Nanoparticles as Drug Carriers for Cancer Treatment. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02209] [Reference Citation Analysis]
36 Peña JA, Du XJ, Xing JF. One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles. Colloid Polym Sci. [DOI: 10.1007/s00396-022-05012-x] [Reference Citation Analysis]
37 Musarurwa H, Tawanda Tavengwa N. Recent progress in the application of pH-responsive polymers in separation science. Microchemical Journal 2022;179:107503. [DOI: 10.1016/j.microc.2022.107503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Setia A, Sahu RK, Ray S, Widyowati R, Ekasari W, Saraf S. Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs. Curr Drug Metab 2022;23:757-80. [PMID: 35761494 DOI: 10.2174/1389200223666220627110049] [Reference Citation Analysis]
39 Martin BY, Claverie JP. Ephemeral Amphiphilic Polyamines that Evaporate When Triggered─Implications for the Fabrication of Electronic Inks. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00578] [Reference Citation Analysis]
40 Abdelaty MSA. Comprehensive study of the phase transition temperature of poly (NIPAAm-co-DEAMCA-co-VA) terpolymers, post-serine and valine: thermal/pH and Hofmeister anions. Polym Bull . [DOI: 10.1007/s00289-022-04337-5] [Reference Citation Analysis]
41 Chen Q, Guo C, Zhou X, Su Y, Guo H, Cao M, Li J, Zhang Y, Zhao W, Gao X, Mi S, Chen D. N-acetylneuraminic acid and chondroitin sulfate modified nanomicelles with ROS-sensitive H2S donor via targeting E-selectin receptor and CD44 receptor for the efficient therapy of atherosclerosis. Int J Biol Macromol 2022;211:259-70. [PMID: 35513096 DOI: 10.1016/j.ijbiomac.2022.04.180] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
42 Dutta G, Manickam S, Sugumaran A. Stimuli-Responsive Hybrid Metal Nanocomposite - A Promising Technology for Effective Anticancer Therapy. Int J Pharm 2022;:121966. [PMID: 35764265 DOI: 10.1016/j.ijpharm.2022.121966] [Reference Citation Analysis]
43 Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharmaceutics 2022;19:1786-94. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal 2022;173:111293. [DOI: 10.1016/j.eurpolymj.2022.111293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
45 Rajagopal P, Jayandharan GR, Maheswari Krishnan U. Polyketal-based nanocarriers: A new class of stimuli-responsive delivery systems for therapeutic applications. European Polymer Journal 2022;173:111290. [DOI: 10.1016/j.eurpolymj.2022.111290] [Reference Citation Analysis]
46 Zhang CW, Zhang JG, Yang X, Du WL, Yu ZL, Lv ZY, Mou XZ. Carbohydrates based stimulus responsive nanocarriers for cancer-targeted chemotherapy: A review of current practices. Expert Opin Drug Deliv 2022. [PMID: 35611662 DOI: 10.1080/17425247.2022.2081320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Bhatta R, Han J, Zhou J, Li H, Wang H. Recyclable cell-surface chemical tags for repetitive cancer targeting. J Control Release 2022;347:164-74. [PMID: 35537537 DOI: 10.1016/j.jconrel.2022.05.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Dzulkharnien NSF, Rohani R. A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. Nanomaterials (Basel) 2022;12:1629. [PMID: 35630851 DOI: 10.3390/nano12101629] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Khetan R, Dharmayanti C, Gillam TA, Kübler E, Klingler-Hoffmann M, Ricciardelli C, Oehler MK, Blencowe A, Garg S, Albrecht H. Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022;14:2362. [PMID: 35625966 DOI: 10.3390/cancers14102362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Shinn J, Kwon N, Lee SA, Lee Y. Smart pH-responsive nanomedicines for disease therapy. J Pharm Investig 2022;:1-15. [PMID: 35573320 DOI: 10.1007/s40005-022-00573-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
51 Rampado R, Caliceti P, Agostini M. Latest Advances in Biomimetic Cell Membrane-Coated and Membrane-Derived Nanovectors for Biomedical Applications. Nanomaterials (Basel) 2022;12:1543. [PMID: 35564251 DOI: 10.3390/nano12091543] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
52 Rennick JJ, Nowell CJ, Pouton CW, Johnston AP. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor.. [DOI: 10.1101/2022.04.13.488146] [Reference Citation Analysis]
53 Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022;12:855019. [PMID: 35392227 DOI: 10.3389/fonc.2022.855019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
54 Zhou S, Zeng M, Liu Y, Sui X, Yuan J. Stimuli-Responsive Pickering Emulsions Regulated via Polymerization-Induced Self-Assembly Nanoparticles. Macromol Rapid Commun 2022;:e2200010. [PMID: 35393731 DOI: 10.1002/marc.202200010] [Reference Citation Analysis]
55 Tanaka M, Izumiya M, Haniu H, Ueda K, Ma C, Ueshiba K, Ideta H, Sobajima A, Uchiyama S, Takahashi J, Saito N. Current Methods in the Study of Nanomaterials for Bone Regeneration. Nanomaterials 2022;12:1195. [DOI: 10.3390/nano12071195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Huo S, Liao Z, Zhao P, Zhou Y, Göstl R, Herrmann A. Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation. Adv Sci (Weinh) 2022;9:e2104696. [PMID: 35195372 DOI: 10.1002/advs.202104696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 De R, Mahata MK, Kim KT. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv Sci (Weinh) 2022;9:e2105373. [PMID: 35112798 DOI: 10.1002/advs.202105373] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
58 Shukla SS, Pandey RK, Kalyani G. Controlled Drug Delivery Systems. Advancements in Controlled Drug Delivery Systems 2022. [DOI: 10.4018/978-1-7998-8908-3.ch008] [Reference Citation Analysis]
59 Sun Y, Bian H, Chen Y. A Photolysis-Assist Molecular Communication for Tumor Biosensing. Sensors (Basel) 2022;22:2495. [PMID: 35408108 DOI: 10.3390/s22072495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Tapeinos C, Gao H, Bauleth‐ramos T, Santos HA. Progress in Stimuli‐Responsive Biomaterials for Treating Cardiovascular and Cerebrovascular Diseases. Small. [DOI: 10.1002/smll.202200291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
61 Liu Z, Ma Y, Xiang Y, Shen X, Shi Z, Gao J. Integrating Boronic Esters and Anthracene into Covalent Adaptable Networks toward Stimuli-Responsive Elastomers. Polymers 2022;14:1104. [DOI: 10.3390/polym14061104] [Reference Citation Analysis]
62 Mahmoud K, Swidan S, El-nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01309-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
63 Haldar U, Mondal S, Hazra S, Guin S, Yeasmin L, Chatterjee DP, Nandi AK. Tailor made synthesis of water-soluble polythiophene-graft-poly(caprolactone-block-dimethylaminoethyl methacrylate) copolymer and their pH tunable self-assembly and optoelectronic properties. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111124] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Lou K, Hu Z, Zhang H, Li Q, Ji X. Information Storage Based on Stimuli‐Responsive Fluorescent 3D Code Materials. Adv Funct Materials 2022;32:2113274. [DOI: 10.1002/adfm.202113274] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
65 Zou M, Zhao P, Fan J, Göstl R, Herrmann A. Microgels as drug carriers for sonopharmacology. Journal of Polymer Science. [DOI: 10.1002/pol.20210874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022;395:133-48. [PMID: 34982185 DOI: 10.1007/s00210-021-02196-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Song M, Cui M, Liu K. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114205] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
68 Li C, Wu P, Dou Y, Li Q, Zhang J. Bioresponsive nanoplatforms for imaging and therapy of cardiovascular diseases. VIEW 2022;3:20200137. [DOI: 10.1002/viw.20200137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
69 Domiński A, Domińska M, Skonieczna M, Pastuch-Gawołek G, Kurcok P. Shell-Sheddable Micelles Based on Poly(ethylene glycol)-hydrazone-poly[R,S]-3-hydroxybutyrate Copolymer Loaded with 8-Hydroxyquinoline Glycoconjugates as a Dual Tumor-Targeting Drug Delivery System. Pharmaceutics 2022;14:290. [PMID: 35214023 DOI: 10.3390/pharmaceutics14020290] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
70 Fedotov S, Alexandrov D, Starodumov I, Korabel N. Stochastic Model of Virus–Endosome Fusion and Endosomal Escape of pH-Responsive Nanoparticles. Mathematics 2022;10:375. [DOI: 10.3390/math10030375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
71 Zou M, Zhao P, Huo S, Göstl R, Herrmann A. Activation of Antibiotic-Grafted Polymer Brushes by Ultrasound. ACS Macro Lett 2022;11:15-9. [PMID: 35574800 DOI: 10.1021/acsmacrolett.1c00645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
72 Li T, Guo R, Zong Q, Ling G. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr Polym 2022;276:118644. [PMID: 34823758 DOI: 10.1016/j.carbpol.2021.118644] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
73 Mortensen N, Toews P, Bates J. Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers (Basel) 2022;14:248. [PMID: 35054655 DOI: 10.3390/polym14020248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Ansari MT, Murteza S, Ahsan MN, Hasnain MS, Nayak AK. Chitosan as a responsive biopolymer in drug delivery. Chitosan in Drug Delivery 2022. [DOI: 10.1016/b978-0-12-819336-5.00002-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Jazani AM, Oh JK. Synthesis of multiple stimuli-responsive degradable block copolymers via facile carbonyl imidazole-induced postpolymerization modification. Polym Chem . [DOI: 10.1039/d2py00729k] [Reference Citation Analysis]
76 Jimaja S, Varlas S, Foster JC, Taton D, Dove AP, O'reilly RK. Stimuli-responsive and core cross-linked micelles developed by NiCCo-PISA of helical poly(aryl isocyanide)s. Polym Chem . [DOI: 10.1039/d2py00397j] [Reference Citation Analysis]
77 Behera A, Padhi S. pH-Sensitive Polymeric Nanoparticles for Cancer Treatment. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_15] [Reference Citation Analysis]
78 Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1809. [PMID: 36416028 DOI: 10.1002/wnan.1809] [Reference Citation Analysis]
79 Yadav AS, Kundu IG, Radharani N, Mishra B, Kundu GC. pH-responsive nanomedicine for breast cancer targeting. Targeted Nanomedicine for Breast Cancer Therapy 2022. [DOI: 10.1016/b978-0-12-824476-0.00019-x] [Reference Citation Analysis]
80 Salve R, Kumar P, Gajbhiye KR, Shende RA, Chaudhari BP, Gajbhiye V. Mesoporous silica nanoparticles-based stimuli-triggered drug release systems. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00007-2] [Reference Citation Analysis]
81 Beach MA, Teo SLY, Chen MZ, Smith SA, Pouton CW, Johnston APR, Such GK. Quantifying the Endosomal Escape of pH-Responsive Nanoparticles Using the Split Luciferase Endosomal Escape Quantification Assay. ACS Appl Mater Interfaces 2021. [PMID: 34964593 DOI: 10.1021/acsami.1c18359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
82 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
83 Tian M, Xin F, Gao Y, Nie J, Sun F. Design of a near‐infrared‐triggered photo/thermal dual‐responsive composite carrier with excellent biocompatibility for controllable drug release. J of Applied Polymer Sci 2022;139:52029. [DOI: 10.1002/app.52029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
84 Kumar N, Tyeb S, Verma V. Recent advances on Metal oxide-polymer systems in targeted therapy and diagnosis: Applications and toxicological perspective. Journal of Drug Delivery Science and Technology 2021;66:102814. [DOI: 10.1016/j.jddst.2021.102814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Tang N, Ning Q, Wang Z, Tao Y, Zhao X, Tang S. Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids Surf B Biointerfaces 2021;210:112257. [PMID: 34894597 DOI: 10.1016/j.colsurfb.2021.112257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Geyik G, Işıklan N. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery. Int J Biol Macromol 2021;192:701-15. [PMID: 34637816 DOI: 10.1016/j.ijbiomac.2021.10.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
87 Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. Materials Today 2021;51:317-49. [DOI: 10.1016/j.mattod.2021.09.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
88 Chen J, Jiang Z, Zhang YS, Ding J, Chen X. Smart transformable nanoparticles for enhanced tumor theranostics. Applied Physics Reviews 2021;8:041321. [DOI: 10.1063/5.0061530] [Cited by in Crossref: 36] [Cited by in F6Publishing: 46] [Article Influence: 18.0] [Reference Citation Analysis]
89 Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021;22:12510. [PMID: 34830392 DOI: 10.3390/ijms222212510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Rajappan SC, Davis BJ, Thornell TL, Simon YC. The stability of aliphatic azo linkages influences the controlled scission of degradable polyurethanes. Journal of Polymer Science 2021;59:2742-2753. [DOI: 10.1002/pol.20210205] [Reference Citation Analysis]
91 Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. Materials (Basel) 2021;14:6812. [PMID: 34832213 DOI: 10.3390/ma14226812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
92 Zhang M, Yu Z, Lo ECM. A New pH-Responsive Nano Micelle for Enhancing the Effect of a Hydrophobic Bactericidal Agent on Mature Streptococcus mutans Biofilm. Front Microbiol 2021;12:761583. [PMID: 34733266 DOI: 10.3389/fmicb.2021.761583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
93 Tracey SR, Smyth P, Barelle CJ, Scott CJ. Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochem Soc Trans 2021;49:2253-69. [PMID: 34709394 DOI: 10.1042/BST20210343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021;13:5376. [PMID: 34771541 DOI: 10.3390/cancers13215376] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
95 Han W, Ke J, Guo F, Meng F, Li H, Wang L. Construction and antitumor properties of a targeted nano-drug carrier system responsive to the tumor microenvironment. Int J Pharm 2021;608:121066. [PMID: 34481009 DOI: 10.1016/j.ijpharm.2021.121066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Machtakova M, Wirsching S, Gehring S, Landfester K, Thérien-Aubin H. Controlling the semi-permeability of protein nanocapsules influences the cellular response to macromolecular payloads. J Mater Chem B 2021;9:8389-98. [PMID: 34676863 DOI: 10.1039/d1tb01368h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
97 Xiang Z, Liu M, Song J. Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. Applied Sciences 2021;11:9541. [DOI: 10.3390/app11209541] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Xu Z, Seddon JM, Beales PA, Rappolt M, Tyler AII. Breaking Isolation to Form New Networks: pH-Triggered Changes in Connectivity inside Lipid Nanoparticles. J Am Chem Soc 2021;143:16556-65. [PMID: 34591464 DOI: 10.1021/jacs.1c06244] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
99 Wang S, Zhou Y, Tao W, Liu J, Chen H, Zhao Z. Fe3O4-modified amphiphilic polyurethane nanoparticles with good stability as magnetic-targeted drug carriers. Polym Bull . [DOI: 10.1007/s00289-021-03931-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
100 Yasuda H, Buskohl PR, Gillman A, Murphey TD, Stepney S, Vaia RA, Raney JR. Mechanical computing. Nature 2021;598:39-48. [PMID: 34616053 DOI: 10.1038/s41586-021-03623-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
101 Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. Small 2021;:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
102 Li K, Li R, Zhou B, Chen J, Lan K, Zhan W, Chen D, Zhang T, Li X. Cascade Release Nanocarriers for the Triple-Negative Breast Cancer Near-Infrared Imaging and Photothermal-Chemo Synergistic Therapy. Front Oncol 2021;11:747608. [PMID: 34604092 DOI: 10.3389/fonc.2021.747608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
103 Abdelaty MSA. A Facile Method for the Preparation of Hydrophilic-Hydrophobic Functional Thermo-pH Responsive Terpolymers Based on Poly (NIPAAm-co-DMAA-co-DMAMVA) and Post-polymerization. J Polym Environ 2021;29:3227-41. [DOI: 10.1007/s10924-021-02117-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
104 Pelloth JL, Tran PA, Walther A, Goldmann AS, Frisch H, Truong VX, Barner-Kowollik C. Wavelength-Selective Softening of Hydrogel Networks. Adv Mater 2021;33:e2102184. [PMID: 34365684 DOI: 10.1002/adma.202102184] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
105 Abdelaty MSA. Trends in the Phase Separation Temperature Optimization of a Functional and Thermo-pH Responsive Terpolymer of Poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) Acrylamide-co-vanillin Acrylate). J Polym Environ 2021;29:3116-29. [DOI: 10.1007/s10924-021-02096-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
106 Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021;26:5905. [PMID: 34641447 DOI: 10.3390/molecules26195905] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
107 Paradowska-Stolarz A, Wieckiewicz M, Owczarek A, Wezgowiec J. Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021;22:10337. [PMID: 34638678 DOI: 10.3390/ijms221910337] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
108 Karabacak RB, Vidallon MLP, Meaney SP, Acter S, Lu ZZ, Tabor RF, Teo BM. pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid Polym Sci 2021;299:1717-28. [DOI: 10.1007/s00396-021-04884-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
109 Zhang C, Kermaniyan S, Smith SA, Gillies ER, Such GK. Acid-Responsive Poly(glyoxylate) Self-Immolative Star Polymers. Biomacromolecules 2021;22:3892-900. [PMID: 34410113 DOI: 10.1021/acs.biomac.1c00694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
110 Kalirajan C, Dukle A, Nathanael AJ, Oh TH, Manivasagam G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers (Basel) 2021;13:3015. [PMID: 34503054 DOI: 10.3390/polym13173015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
111 Mulens-arias V. Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JNT 2021;2:174-95. [DOI: 10.3390/jnt2030011] [Reference Citation Analysis]
112 Zhang W, Yan Y, Nagappan S, He S, Ha C, Jin Y. Dual (thermo-/pH-) responsive P(NIPAM-co-AA-co-HEMA) nanocapsules for controlled release of 5-fluorouracil. Journal of Macromolecular Science, Part A 2021;58:860-71. [DOI: 10.1080/10601325.2021.1964368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
113 Geiselhart CM, Mutlu H, Barner‐kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem 2021;133:17430-17454. [DOI: 10.1002/ange.202012592] [Reference Citation Analysis]
114 Geiselhart CM, Mutlu H, Barner-Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021;60:17290-313. [PMID: 33217121 DOI: 10.1002/anie.202012592] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
115 Hao Y, Zhang F, Mo S, Zhao J, Wang X, Zhao Y, Zhang L. Biomedical Applications of Supramolecular Materials in the Controllable Delivery of Steroids. Front Mol Biosci 2021;8:700712. [PMID: 34368229 DOI: 10.3389/fmolb.2021.700712] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021;121:9243-358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 24.5] [Reference Citation Analysis]
117 Adhikari C. Polymer nanoparticles-preparations, applications and future insights: a concise review. Polymer-Plastics Technology and Materials. [DOI: 10.1080/25740881.2021.1939715] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
118 Thananukul K, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021;174:425-46. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
119 Asadi-zaki N, Mardani H, Roghani-mamaqani H, Shahi S. Interparticle cycloaddition reactions for morphology transition of coumarin-functionalized stimuli-responsive polymer nanoparticles prepared by surfactant-free dispersion polymerization. Polymer 2021;228:123899. [DOI: 10.1016/j.polymer.2021.123899] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
120 Paris JL, Baeza A. Nano‐ and Microscale Drug Delivery Approaches for Therapeutic Immunomodulation. ChemNanoMat 2021;7:773-88. [DOI: 10.1002/cnma.202100062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Alkahtani S, Alarifi S, Albasher G, Al-Zharani M, Aljarba NH, Almarzoug MH, Alhoshani NM, Al-Johani NS, Alothaid H, Alkahtane AA. Poly Lactic-Co-Glycolic Acid- (PLGA-) Loaded Nanoformulation of Cisplatin as a Therapeutic Approach for Breast Cancers. Oxid Med Cell Longev 2021;2021:5834418. [PMID: 34257812 DOI: 10.1155/2021/5834418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
122 Arroub K, Gessner I, Fischer T, Mathur S. Thermoresponsive Poly ( N ‐Isopropylacrylamide)/Polycaprolacton Nanofibrous Scaffolds for Controlled Release of Antibiotics. Adv Eng Mater 2021;23:2100221. [DOI: 10.1002/adem.202100221] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
123 Jiang G, Wang X, Zhou Y, Zou C, Wang L, Wang W, Zhang D, Xu H, Li J, Li F, Luo D, Ma X, Ma D, Tan S, Wei R, Xi L. TMTP1-Modified, Tumor Microenvironment Responsive Nanoparticles Co-Deliver Cisplatin and Paclitaxel Prodrugs for Effective Cervical Cancer Therapy. Int J Nanomedicine 2021;16:4087-104. [PMID: 34163161 DOI: 10.2147/IJN.S298252] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
124 Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021;334:114-26. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
125 Mulens-Arias V, Rojas JM, Barber DF. The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Front Immunol 2021;12:693709. [PMID: 34177955 DOI: 10.3389/fimmu.2021.693709] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
126 Long W, Ouyang H, Zhou C, Wan W, Yu S, Qian K, Liu M, Zhang X, Feng Y, Wei Y. Simultaneous surface functionalization and drug loading: A novel method for fabrication of cellulose nanocrystals-based pH responsive drug delivery system. Int J Biol Macromol 2021;182:2066-75. [PMID: 34087297 DOI: 10.1016/j.ijbiomac.2021.05.193] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
127 Abdelaty MSA. Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). J Polym Res 2021;28. [DOI: 10.1007/s10965-021-02574-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
128 He Q, Yuan S, Tang H, Wang S, Mu Z, Li D, Wang S, Jing X, Hu S, Ji P, Chen T. Safeguarding Osteointegration in Diabetic Patients: A Potent “Chain Armor” Coating for Scavenging ROS and Macrophage Reprogramming in a Microenvironment‐Responsive Manner. Adv Funct Mater 2021;31:2101611. [DOI: 10.1002/adfm.202101611] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
129 Geraili A, Xing M, Mequanint K. Design and fabrication of drug‐delivery systems toward adjustable release profiles for personalized treatment. VIEW 2021;2:20200126. [DOI: 10.1002/viw.20200126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
130 Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 41] [Cited by in F6Publishing: 51] [Article Influence: 20.5] [Reference Citation Analysis]
131 Xu X, He Y, Wang Y. Near-infrared organic chromophores with pH-sensitive, non-radiative emission for intelligent disease treatment. Cell Reports Physical Science 2021;2:100433. [DOI: 10.1016/j.xcrp.2021.100433] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
132 Kost B, Gonciarz W, Krupa A, Socka M, Rogala M, Biela T, Brzeziński M. pH-tunable nanoparticles composed of copolymers of lactide and allyl-glycidyl ether with various functionalities for the efficient delivery of anti-cancer drugs. Colloids Surf B Biointerfaces 2021;204:111801. [PMID: 33957491 DOI: 10.1016/j.colsurfb.2021.111801] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
133 Rajes K, Walker KA, Hadam S, Zabihi F, Ibrahim-Bacha J, Germer G, Patoka P, Wassermann B, Rancan F, Rühl E, Vogt A, Haag R. Oxidation-Sensitive Core-Multishell Nanocarriers for the Controlled Delivery of Hydrophobic Drugs. ACS Biomater Sci Eng 2021;7:2485-95. [PMID: 33905661 DOI: 10.1021/acsbiomaterials.0c01771] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
134 Li N, Duan Z, Wang L, Guo C, Zhang H, Gu Z, Gong Q, Luo K. An Amphiphilic PEGylated Peptide Dendron-Gemcitabine Prodrug-Based Nanoagent for Cancer Therapy. Macromol Rapid Commun 2021;42:e2100111. [PMID: 33871122 DOI: 10.1002/marc.202100111] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
135 Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
136 Sun H, Feng M, Chen S, Wang R, Luo Y, Yin B, Li J, Wang X. Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. J Mater Chem B 2020;8:7149-59. [PMID: 32617545 DOI: 10.1039/d0tb01437k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
137 Thakuria A, Kataria B, Gupta D. Nanoparticle-based methodologies for targeted drug delivery—an insight. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05190-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
138 Fu X, Zhang G, Zhang Y, Sun H, Yang S, Ni S, Cui J. Co-delivery of anticancer drugs and cell penetrating peptides for improved cancer therapy. Chinese Chemical Letters 2021;32:1559-62. [DOI: 10.1016/j.cclet.2020.10.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
139 Li K, Zang X, Cheng M, Chen X. Stimuli-responsive nanoparticles based on poly acrylic derivatives for tumor therapy. Int J Pharm 2021;601:120506. [PMID: 33798689 DOI: 10.1016/j.ijpharm.2021.120506] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
140 Wang S. pH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Front Chem 2021;9:645297. [PMID: 33834015 DOI: 10.3389/fchem.2021.645297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
141 Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. Russ J Bioorg Chem 2021;47:71-98. [DOI: 10.1134/s1068162021010222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
142 Phoungtawee P, Seidi F, Treetong A, Warin C, Klamchuen A, Crespy D. Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Lett 2021;10:365-9. [PMID: 35549058 DOI: 10.1021/acsmacrolett.1c00009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
143 Spanedda MV, Bourel-Bonnet L. Cyclic Anhydrides as Powerful Tools for Bioconjugation and Smart Delivery. Bioconjug Chem 2021;32:482-96. [PMID: 33662203 DOI: 10.1021/acs.bioconjchem.1c00023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
144 Li X, Yang X, Wu R, Dong N, Lu X, Zhang P. Research progress of response strategies based on tumor microenvironment in drug delivery systems. J Nanopart Res 2021;23:64. [DOI: 10.1007/s11051-020-05136-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Cook AB, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS Nano 2021;15:2068-98. [PMID: 33555171 DOI: 10.1021/acsnano.0c09115] [Cited by in Crossref: 45] [Cited by in F6Publishing: 54] [Article Influence: 22.5] [Reference Citation Analysis]
146 Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH ‐sensitive polymers: Classification and some fine potential applications. Polym Adv Technol 2021;32:1455-84. [DOI: 10.1002/pat.5230] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 21.5] [Reference Citation Analysis]
147 Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. Journal of Controlled Release 2021;330:502-28. [DOI: 10.1016/j.jconrel.2020.12.027] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
148 Taneja P, Sharma S, Sinha VB, Yadav AK. Advancement of nanoscience in development of conjugated drugs for enhanced disease prevention. Life Sci 2021;268:118859. [PMID: 33358907 DOI: 10.1016/j.lfs.2020.118859] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
149 Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Göstl R, Herrmann A. Mechanochemical bond scission for the activation of drugs. Nat Chem 2021;13:131-9. [DOI: 10.1038/s41557-020-00624-8] [Cited by in Crossref: 79] [Cited by in F6Publishing: 81] [Article Influence: 39.5] [Reference Citation Analysis]
150 Pontrelli G, Toniolo G, McGinty S, Peri D, Succi S, Chatgilialoglu C. Mathematical modelling of drug delivery from pH-responsive nanocontainers. Comput Biol Med 2021;131:104238. [PMID: 33618104 DOI: 10.1016/j.compbiomed.2021.104238] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
151 Pichla M, Bartosz G, Stefaniuk I, Sadowska-Bartosz I. pH-Responsive Redox Nanoparticles Protect SH-SY5Y Cells at Lowered pH in a Cellular Model of Parkinson's Disease. Molecules 2021;26:543. [PMID: 33494255 DOI: 10.3390/molecules26030543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
152 Deng S, Cui CX, Duan L, Hu L, Yang X, Wang JC, Qu LB, Zhang Y. Anticancer Drug Release System Based on Hollow Silica Nanocarriers Triggered by Tumor Cellular Microenvironments. ACS Omega 2021;6:553-8. [PMID: 33458507 DOI: 10.1021/acsomega.0c05032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
153 Chawla R, Rani V, Mishra M. Nanoparticulate Carriers—Versatile Delivery Systems. Nanopharmaceutical Advanced Delivery Systems 2021. [DOI: 10.1002/9781119711698.ch2] [Reference Citation Analysis]
154 Andrade-Gagnon B, Bélanger-Bouliga M, Trang Nguyen P, Nguyen THD, Bourgault S, Nazemi A. Degradable Spirocyclic Polyacetal-Based Core-Amphiphilic Assemblies for Encapsulation and Release of Hydrophobic Cargo. Nanomaterials (Basel) 2021;11:E161. [PMID: 33435172 DOI: 10.3390/nano11010161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
155 Xu C, Yu B, Qi Y, Zhao N, Xu FJ. Versatile Types of Cyclodextrin-Based Nucleic Acid Delivery Systems. Adv Healthc Mater 2021;10:e2001183. [PMID: 32935932 DOI: 10.1002/adhm.202001183] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
156 Weng C, Yang T, Li Y. Design and fabrication of cell-targeted, dual drug-loaded nanoparticles with pH-controlled drug release and near-infrared light-induced photothermal effects. Materials & Design 2021;197:109230. [DOI: 10.1016/j.matdes.2020.109230] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
157 Peng W, Cai Y, Fanslau L, Vana P. Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polym Chem 2021;12:6198-229. [DOI: 10.1039/d1py01172c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
158 Thomas RG, Surendran SP, Jeong YY. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front Mol Biosci 2020;7:610533. [PMID: 33392264 DOI: 10.3389/fmolb.2020.610533] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
159 Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. View 2021;2:20200042. [DOI: 10.1002/viw.20200042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
160 Domiński A, Konieczny T, Duale K, Krawczyk M, Pastuch-Gawołek G, Kurcok P. Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020;12:E2890. [PMID: 33276597 DOI: 10.3390/polym12122890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
161 Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020;7:587012. [PMID: 33324678 DOI: 10.3389/fmolb.2020.587012] [Cited by in Crossref: 79] [Cited by in F6Publishing: 88] [Article Influence: 26.3] [Reference Citation Analysis]
162 García-García G, Fernández-Álvarez F, Cabeza L, Delgado ÁV, Melguizo C, Prados JC, Arias JL. Gemcitabine-Loaded Magnetically Responsive Poly(ε-caprolactone) Nanoparticles against Breast Cancer. Polymers (Basel) 2020;12:E2790. [PMID: 33255803 DOI: 10.3390/polym12122790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
163 Abasian P, Shakibi S, Maniati MS, Nouri Khorasani S, Khalili S. Targeted delivery, drug release strategies, and toxicity study of polymeric drug nanocarriers. Polym Adv Technol 2021;32:931-44. [DOI: 10.1002/pat.5168] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
164 Pramod Kumar EK, Um W, Park JH. Recent Developments in Pathological pH-Responsive Polymeric Nanobiosensors for Cancer Theranostics. Front Bioeng Biotechnol 2020;8. [DOI: 10.3389/fbioe.2020.601586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
165 Dhara (Ganguly) M. Smart polymeric nanostructures for targeted delivery of therapeutics. Journal of Macromolecular Science, Part A 2021;58:269-84. [DOI: 10.1080/10601325.2020.1842766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
166 Urello M, Hsu WH, Christie RJ. Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020;117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
167 Visaveliya NR, Köhler JM. Emerging Structural and Interfacial Features of Particulate Polymers at the Nanoscale. Langmuir 2020;36:13125-43. [DOI: 10.1021/acs.langmuir.0c02566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
168 Melnyk T, Đorđević S, Conejos-Sánchez I, Vicent MJ. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv Drug Deliv Rev 2020;160:136-69. [PMID: 33091502 DOI: 10.1016/j.addr.2020.10.007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
169 Mishra S, Kataria A, Kundu B, Nebhani L. Hybrid mesoporous silica-based nanocarriers for responsive drug release in cancerous cell line. Appl Nanosci 2021;11:217-28. [DOI: 10.1007/s13204-020-01564-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
170 Can M, Guven O, Sahiner N. Micro and Nanogels for Biomedical Applications. Hacettepe Journal of Biology and Chemistry. [DOI: 10.15671/hjbc.810599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
171 Shen W, Zheng J, Zhou Z, Zhang D. Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjugates and their biomedical applications. Acta Biomater 2020;115:75-91. [PMID: 32853806 DOI: 10.1016/j.actbio.2020.08.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
172 Cerqueira SR, Ayad NG, Lee JK. Neuroinflammation Treatment via Targeted Delivery of Nanoparticles. Front Cell Neurosci 2020;14:576037. [PMID: 33192321 DOI: 10.3389/fncel.2020.576037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
173 Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020;327:641-66. [PMID: 32911014 DOI: 10.1016/j.jconrel.2020.09.008] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 16.7] [Reference Citation Analysis]
174 Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2021;329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
175 Wang G, Zhao X, Wu H, Lovejoy DB, Zheng M, Lee A, Fu L, Miao K, An Y, Sayyadi N, Ding K, Chung RS, Lu Y, Li J, Morsch M, Shi B. A Robust Intrinsically Green Fluorescent Poly(Amidoamine) Dendrimer for Imaging and Traceable Central Nervous System Delivery in Zebrafish. Small 2020;16:2003654. [DOI: 10.1002/smll.202003654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
176 Su S, M Kang P. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics 2020;12:E837. [PMID: 32882875 DOI: 10.3390/pharmaceutics12090837] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
177 Novy Z, Lobaz V, Vlk M, Kozempel J, Stepanek P, Popper M, Vrbkova J, Hajduch M, Hruby M, Petrik M. Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model. Nanomaterials (Basel) 2020;10:E1690. [PMID: 32867391 DOI: 10.3390/nano10091690] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
178 Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021;251:116871. [PMID: 33142550 DOI: 10.1016/j.carbpol.2020.116871] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 16.3] [Reference Citation Analysis]
179 Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. International Journal of Pharmaceutics 2020;586:119605. [DOI: 10.1016/j.ijpharm.2020.119605] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
180 Zhou LY, Zhu YH, Wang XY, Shen C, Wei XW, Xu T, He ZY. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Comput Struct Biotechnol J 2020;18:1980-99. [PMID: 32802271 DOI: 10.1016/j.csbj.2020.07.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
181 Domiński A, Krawczyk M, Konieczny T, Kasprów M, Foryś A, Pastuch-Gawołek G, Kurcok P. Biodegradable pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting. Eur J Pharm Biopharm 2020;154:317-29. [PMID: 32717390 DOI: 10.1016/j.ejpb.2020.07.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
182 Li Y, Li R, Chakraborty A, Ogurlu R, Zhao X, Chen J, Xu Q. Combinatorial Library of Cyclic Benzylidene Acetal-Containing pH-Responsive Lipidoid Nanoparticles for Intracellular mRNA Delivery. Bioconjug Chem 2020;31:1835-43. [PMID: 32520527 DOI: 10.1021/acs.bioconjchem.0c00295] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
183 Ling L, Yu H, Ismail M, Zhu Y, Du Y, Qi J. Synthetic dimeric-drug phospholipid: a versatile liposomal platform for cancer therapy. Chem Commun (Camb) 2020;56:7621-4. [PMID: 32515754 DOI: 10.1039/d0cc03589k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
184 Zhou S, Fu S, Wang H, Deng Y, Zhou X, Sun W, Zhai Y. Acetal-linked polymeric prodrug micelles based on aliphatic polycarbonates for paclitaxel delivery: preparation, characterization, in vitro release and anti-proliferation effects. J Biomater Sci Polym Ed 2020;31:2007-23. [PMID: 32619161 DOI: 10.1080/09205063.2020.1792046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
185 Alemayehu YA, Fan WL, Ilhami FB, Chiu CW, Lee DJ, Cheng CC. Photosensitive Supramolecular Micelle-Mediated Cellular Uptake of Anticancer Drugs Enhances the Efficiency of Chemotherapy. Int J Mol Sci 2020;21:E4677. [PMID: 32630069 DOI: 10.3390/ijms21134677] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
186 Ai X, Wang S, Duan Y, Zhang Q, Chen MS, Gao W, Zhang L. Emerging Approaches to Functionalizing Cell Membrane-Coated Nanoparticles. Biochemistry 2021;60:941-55. [PMID: 32452667 DOI: 10.1021/acs.biochem.0c00343] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 14.7] [Reference Citation Analysis]
187 Li D, Su T, Ma L, Yin F, Xu W, Ding J, Li Z. Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. Eur J Med Chem 2020;199:112367. [PMID: 32474350 DOI: 10.1016/j.ejmech.2020.112367] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
188 Yu C, Wang L, Xu Z, Teng W, Wu Z, Xiong D. Smart micelles self-assembled from four-arm star polymers as potential drug carriers for pH-triggered DOX release. J Polym Res 2020;27. [DOI: 10.1007/s10965-020-02108-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
189 Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics 2020;10:4557-88. [PMID: 32292515 DOI: 10.7150/thno.38069] [Cited by in Crossref: 209] [Cited by in F6Publishing: 215] [Article Influence: 69.7] [Reference Citation Analysis]
190 Bhat A, Amanor-Boadu JM, Guiseppi-Elie A. Toward Impedimetric Measurement of Acidosis with a pH-Responsive Hydrogel Sensor. ACS Sens 2020;5:500-9. [PMID: 31948224 DOI: 10.1021/acssensors.9b02336] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
191 He Y, Foralosso R, Trindade GF, Ilchev A, Ruiz‐cantu L, Clark EA, Khaled S, Hague RJM, Tuck CJ, Rose FRAJ, Mantovani G, Irvine DJ, Roberts CJ, Wildman RD. A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Adv Therap 2020;3:1900187. [DOI: 10.1002/adtp.201900187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
192 Fan SY, Hao YN, Zhang WX, Kapasi A, Shu Y, Wang JH, Chen W. Poly(ionic liquid)-Gated CuCo2S4 for pH-/Thermo-Triggered Drug Release and Photoacoustic Imaging. ACS Appl Mater Interfaces 2020;12:9000-7. [PMID: 32013385 DOI: 10.1021/acsami.9b21292] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
193 Yu Z, Ma L, Ye S, Li G, Zhang M. Construction of an environmentally friendly octenylsuccinic anhydride modified pH-sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress. Carbohydr Polym 2020;236:115972. [PMID: 32172827 DOI: 10.1016/j.carbpol.2020.115972] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
194 Gao F, Wang Q, Yang X. pH-responsive nanoparticles based on optimized synthetic amphiphilic poly(β-amino esters) for doxorubicin delivery. Colloid Polym Sci 2020;298:303-12. [DOI: 10.1007/s00396-020-04606-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
195 Shang M, Sun X, Guo L, Shi D, Liang P, Meng D, Zhou X, Liu X, Zhao Y, Li J. pH- and Ultrasound-Responsive Paclitaxel-Loaded Carboxymethyl Chitosan Nanodroplets for Combined Imaging and Synergistic Chemoradiotherapy. Int J Nanomedicine 2020;15:537-52. [PMID: 32021193 DOI: 10.2147/IJN.S233669] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
196 Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020;8:10700-11. [DOI: 10.1039/d0tb02177f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
197 Syazaliyana Azali N, Hidayatul Nazirah Kamarudin N, Adira Jaafar J, Najiha Timmiati S, Shaiful Sajab M. Modification of mesoporous silica nanoparticles with pH responsive polymer poly (2-vinylpyrrolidone) for the release of 5-Florouracil. Materials Today: Proceedings 2020;31:A12-7. [DOI: 10.1016/j.matpr.2020.09.693] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
198 Wei P, Sobotta FH, Kellner C, Bandelli D, Hoeppener S, Schubert S, Brendel JC, Schubert US. Degradable polycaprolactone nanoparticles stabilized via supramolecular host–guest interactions with pH-responsive polymer-pillar[5]arene conjugates. Polym Chem 2020;11:1985-1997. [DOI: 10.1039/c9py01928f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
199 Domiński A, Konieczny T, Kurcok P. α-Cyclodextrin-Based Polypseudorotaxane Hydrogels. Materials (Basel) 2019;13:E133. [PMID: 31905603 DOI: 10.3390/ma13010133] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
200 Zhang Z, Zhang L, Zhao J, Li C, Wu W, Jiang X. Length effects of cylindrical polymer brushes on their in vitro and in vivo properties. Biomater Sci 2019;7:5124-31. [PMID: 31576843 DOI: 10.1039/c9bm01376h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
201 Such GK, Johnston APR. Understanding Cell Interactions Using Modular Nanoparticle Libraries. Aust J Chem 2019;72:595. [DOI: 10.1071/ch19269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]