1 |
Su M, Ruan L, Dong X, Tian S, Lang W, Wu M, Chen Y, Lv Q, Lei L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int J Biol Macromol 2023;227:472-92. [PMID: 36549612 DOI: 10.1016/j.ijbiomac.2022.12.148] [Reference Citation Analysis]
|
2 |
Zhou Q, Si Z, Wang K, Li K, Hong W, Zhang Y, Li P. Enzyme-triggered smart antimicrobial drug release systems against bacterial infections. J Control Release 2022;352:507-26. [PMID: 36341932 DOI: 10.1016/j.jconrel.2022.10.038] [Reference Citation Analysis]
|
3 |
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022;140:302-13. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
4 |
Sheridan M, Winters C, Zamboni F, Collins MN. Biomaterials: Antimicrobial Surfaces in Biomedical Engineering and Healthcare. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100373] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
5 |
Han Y, Yu Q, Dong X, Hou J, Han J. Plasma SiOx:H Nanocoatings to Enhance the Antibacterial and Anti-Inflammatory Properties of Biomaterials. IJN 2022;Volume 17:381-94. [DOI: 10.2147/ijn.s339000] [Reference Citation Analysis]
|
6 |
Bandatang N, Pongsomboon SA, Jumpapaeng P, Suwanakood P, Saengsuwan S. Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. Int J Biol Macromol 2021;190:585-600. [PMID: 34499957 DOI: 10.1016/j.ijbiomac.2021.08.209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
7 |
Su L, Liu Y, Li Y, An Y, Shi L. Responsive Polymeric Nanoparticles for Biofilm-infection Control. Chin J Polym Sci 2021;39:1376-91. [DOI: 10.1007/s10118-021-2610-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
|
8 |
Ji Y, Han Z, Ding H, Xu X, Wang D, Zhu Y, An F, Tang S, Zhang H, Deng J, Zhou Q. Enhanced Eradication of Bacterial/Fungi Biofilms by Glucose Oxidase-Modified Magnetic Nanoparticles as a Potential Treatment for Persistent Endodontic Infections. ACS Appl Mater Interfaces 2021;13:17289-99. [PMID: 33827209 DOI: 10.1021/acsami.1c01748] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
|
9 |
Ge C, Ye H, Wu F, Zhu J, Song Z, Liu Y, Yin L. Biological applications of water-soluble polypeptides with ordered secondary structures. J Mater Chem B 2020;8:6530-47. [PMID: 32567639 DOI: 10.1039/d0tb00902d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
|
10 |
Li C, Cornel EJ, Du J. Advances and Prospects of Polymeric Particles for the Treatment of Bacterial Biofilms. ACS Appl Polym Mater 2021;3:2218-32. [DOI: 10.1021/acsapm.1c00003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
11 |
Kurbasic M, Garcia AM, Viada S, Marchesan S. Heterochiral tetrapeptide self-assembly into hydrogel biomaterials for hydrolase mimicry. J Pept Sci 2022;28:e3304. [PMID: 33521995 DOI: 10.1002/psc.3304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Dong Y, Zhao S, Wang C, Liu W, Zhang Y, Deng L, Zhang J, Huang P, Wang W, Dong A. Combating drug-resistant bacterial infection using biodegradable nanoparticles assembled from comb-like polycarbonates grafted with amphiphilic polyquaternium. J Mater Chem B 2021;9:357-65. [PMID: 33245311 DOI: 10.1039/d0tb02233k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
13 |
Duarte L, López-saucedo J, Vázquez E, Flores-rojas GG, Lopéz-saucedo F, Bucio E. Antimicrobial Materials for Local Drug Delivery. Environmental and Microbial Biotechnology 2021. [DOI: 10.1007/978-981-15-7098-8_12] [Reference Citation Analysis]
|
14 |
Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. Journal of Controlled Release 2021;329:1102-16. [DOI: 10.1016/j.jconrel.2020.10.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
15 |
Kurbasic M, Garcia AM, Viada S, Marchesan S. Tripeptide Self-Assembly into Bioactive Hydrogels: Effects of Terminus Modification on Biocatalysis. Molecules 2020;26:E173. [PMID: 33396543 DOI: 10.3390/molecules26010173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
16 |
Liang B, Jia E, Yuan X, Zhang G, Su Z. Salt-responsive polyzwitterion brushes conjugated with silver nanoparticles: Preparation and dual antimicrobial/release properties. Chemical Engineering Journal 2020;401:126114. [DOI: 10.1016/j.cej.2020.126114] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
17 |
Hu J, Zhang C, Zhou L, Hu Q, Kong Y, Song D, Cheng Y, Zhang Y. A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms. Sci China Mater 2021;64:1035-46. [DOI: 10.1007/s40843-020-1480-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
18 |
Bourassin N, Baaden M, Lojou E, Sacquin-Mora S. Implicit Modeling of the Impact of Adsorption on Solid Surfaces for Protein Mechanics and Activity with a Coarse-Grained Representation. J Phys Chem B 2020;124:8516-23. [PMID: 32924507 DOI: 10.1021/acs.jpcb.0c05347] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
19 |
Hu D, Zou L, Gao Y, Jin Q, Ji J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. View 2020;1:20200014. [DOI: 10.1002/viw.20200014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
|
20 |
Su L, Li Y, Liu Y, Ma R, Liu Y, Huang F, An Y, Ren Y, Mei HC, Busscher HJ, Shi L. Antifungal‐Inbuilt Metal–Organic‐Frameworks Eradicate Candida albicans Biofilms. Adv Funct Mater 2020;30:2000537. [DOI: 10.1002/adfm.202000537] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
|
21 |
Bourassin N, Baaden M, Lojou E, Sacquin-mora S. Implicit modeling of the impact of adsorption on solid surfaces for protein mechanics and activity with a coarse-grain representation.. [DOI: 10.1101/2020.03.30.015537] [Reference Citation Analysis]
|
22 |
Rigo S, Hürlimann D, Marot L, Malmsten M, Meier W, Palivan CG. Decorating Nanostructured Surfaces with Antimicrobial Peptides to Efficiently Fight Bacteria. ACS Appl Bio Mater 2020;3:1533-43. [DOI: 10.1021/acsabm.9b01154] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
23 |
Wu Y, Xia G, Zhang W, Chen K, Bi Y, Liu S, Zhang W, Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 2020;8:9173-96. [DOI: 10.1039/d0tb01916j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
24 |
Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci 2020;8:6825-39. [DOI: 10.1039/d0bm00974a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
|