BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang Y, Stenzel M. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates. Macromol Biosci 2016;16:791-802. [DOI: 10.1002/mabi.201500453] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Placci M, Giannotti MI, Muro S. Polymer-Based Drug Delivery Systems Under Investigation For Enzyme Replacement And Other Therapies Of Lysosomal Storage Disorders. Adv Drug Deliv Rev 2023;:114683. [PMID: 36657645 DOI: 10.1016/j.addr.2022.114683] [Reference Citation Analysis]
2 Shan W, Peng F, Shen Q, Zhang J. Preparation and evaluation in vitro and in vivo of pristinamycin enteric-coated granules based on albumin nanoparticles. Drug Dev Ind Pharm 2023;49:84-91. [PMID: 36803496 DOI: 10.1080/03639045.2023.2182602] [Reference Citation Analysis]
3 Zhang D, Tang Q, Chen J, Wei Y, Chen J. Novel Development of Nanoparticles-A Promising Direction for Precise Tumor Management. Pharmaceutics 2022;15. [PMID: 36678653 DOI: 10.3390/pharmaceutics15010024] [Reference Citation Analysis]
4 Viana DB, Mathieu-gaedke M, Leao NM, Böker A, Ferreira Soares DC, Glebe U, Tebaldi ML. Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103995] [Reference Citation Analysis]
5 Wang Y, Wagner CR, Distefano MD. Manipulating Cell Fates with Protein Conjugates. Bioconjug Chem 2022;33:1771-84. [PMID: 35969811 DOI: 10.1021/acs.bioconjchem.2c00226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Theodorou A, Gounaris D, Voutyritsa E, Andrikopoulos N, Baltzaki CIM, Anastasaki A, Velonia K. Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization. Biomacromolecules 2022. [PMID: 36067415 DOI: 10.1021/acs.biomac.2c00726] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Raveendran R, Dan Xu Y, Joshi N, Stenzel MH. Progress of albumin-polymer conjugates as efficient drug carriers. Pure and Applied Chemistry 2022;0. [DOI: 10.1515/pac-2021-2006] [Reference Citation Analysis]
8 Danafar H, Salehiabar M, Barsbay M, Rahimi H, Ghaffarlou M, Arbabi Zaboli K, Faghfoori MH, Kaboli S, Nosrati H, Faghfoori Z. Curcumin delivery by modified biosourced carbon-based nanoparticles. Nanomedicine (Lond) 2022;17:95-105. [PMID: 35000461 DOI: 10.2217/nnm-2021-0225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Esim O, Gedik ME, Dogan AL, Gunaydin G, Hascicek C. Development of carboplatin loaded bovine serum albumin nanoparticles and evaluation of its effect on an ovarian cancer cell line. Journal of Drug Delivery Science and Technology 2021;64:102655. [DOI: 10.1016/j.jddst.2021.102655] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Ramos-membrive R, Erhard Á, Luis de Redín I, Quincoces G, Collantes M, Ecay M, Irache JM, Peñuelas I. In vivo SPECT-CT imaging and characterization of technetium-99m-labeled bevacizumab-loaded human serum albumin pegylated nanoparticles. Journal of Drug Delivery Science and Technology 2021;64:101809. [DOI: 10.1016/j.jddst.2020.101809] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 Jin SM, Lee SN, Yoo YJ, Lim YT. Molecular and Macroscopic Therapeutic Systems for Cytokine‐Based Cancer Immunotherapy. Advanced Therapeutics 2021;4:2100026. [DOI: 10.1002/adtp.202100026] [Reference Citation Analysis]
12 Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers (Basel) 2021;13:477. [PMID: 33540922 DOI: 10.3390/polym13030477] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
13 Seba V, Silva G, Chee BS, Henn JG, de Lima GG, Cao Z, Marins M, Nugent M. Stimuli-responsive biopolymeric systems for drug delivery to cancer cells. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00014-1] [Reference Citation Analysis]
14 Oliveira ACJ, Chaves LL, Ribeiro FOS, de Lima LRM, Oliveira TC, García-Villén F, Viseras C, de Paula RCM, Rolim-Neto PJ, Hallwass F, Silva-Filho EC, Alves da Silva D, Soares-Sobrinho JL, Soares MFR. Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydr Polym 2021;254:117226. [PMID: 33357841 DOI: 10.1016/j.carbpol.2020.117226] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
15 Chen C, Ng DYW, Weil T. Polymer bioconjugates: Modern design concepts toward precision hybrid materials. Progress in Polymer Science 2020;105:101241. [DOI: 10.1016/j.progpolymsci.2020.101241] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 23.0] [Reference Citation Analysis]
16 Yang J, Wang F, Yuan H, Zhang L, Jiang Y, Zhang X, Liu C, Chai L, Li H, Stenzel M. Recent advances in ultra-small fluorescent Au nanoclusters toward oncological research. Nanoscale 2019;11:17967-80. [PMID: 31355833 DOI: 10.1039/c9nr04301b] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
17 Feitosa RC, Geraldes DC, Beraldo-de-Araújo VL, Costa JSR, Oliveira-Nascimento L. Pharmacokinetic Aspects of Nanoparticle-in-Matrix Drug Delivery Systems for Oral/Buccal Delivery. Front Pharmacol 2019;10:1057. [PMID: 31607914 DOI: 10.3389/fphar.2019.01057] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
18 Park C, Meghani N, Amin H, Tran PH, Tran TT, Nguyen VH, Lee BJ. The roles of short and long chain fatty acids on physicochemical properties and improved cancer targeting of albumin-based fattigation-platform nanoparticles containing doxorubicin. Int J Pharm 2019;564:124-35. [PMID: 30991133 DOI: 10.1016/j.ijpharm.2019.04.038] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
19 Lachowicz D, Karabasz A, Bzowska M, Szuwarzyński M, Karewicz A, Nowakowska M. Blood-compatible, stable micelles of sodium alginate – Curcumin bioconjugate for anti-cancer applications. European Polymer Journal 2019;113:208-19. [DOI: 10.1016/j.eurpolymj.2019.01.058] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
20 Schubert J, Chanana M. Coating Matters: Review on Colloidal Stability of Nanoparticles with Biocompatible Coatings in Biological Media, Living Cells and Organisms. Curr Med Chem 2018;25:4553-86. [PMID: 29852857 DOI: 10.2174/0929867325666180601101859] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
21 Frich CK, Krüger F, Walther R, Domar C, Andersen AHF, Tvilum A, Dagnæs-Hansen F, Denton PW, Tolstrup M, Paludan SR, Münch J, Zelikin AN. Non-covalent hitchhiking on endogenous carriers as a protraction mechanism for antiviral macromolecular prodrugs. J Control Release 2019;294:298-310. [PMID: 30552954 DOI: 10.1016/j.jconrel.2018.12.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
22 Hameed MK, Ahmady IM, Alawadhi H, Workie B, Sahle-demessie E, Han C, Chehimi MM, Mohamed AA. Gold-carbon nanoparticles mediated delivery of BSA: Remarkable robustness and hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;558:351-8. [DOI: 10.1016/j.colsurfa.2018.09.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
23 Tao C, Chuah YJ, Xu C, Wang DA. Albumin conjugates and assemblies as versatile bio-functional additives and carriers for biomedical applications. J Mater Chem B 2019;7:357-67. [PMID: 32254722 DOI: 10.1039/c8tb02477d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
24 Hou W, Wei L, Liu L, Zhao H. Surface Coassembly of Polymer Brushes and Polymer–Protein Bioconjugates: An Efficient Approach to the Purification of Bioconjugates under Mild Conditions. Biomacromolecules 2018;19:4463-71. [DOI: 10.1021/acs.biomac.8b01355] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
25 Taguchi K, Lu H, Jiang Y, Hung TT, Stenzel MH. Safety of nanoparticles based on albumin-polymer conjugates as a carrier of nucleotides for pancreatic cancer therapy. J Mater Chem B 2018;6:6278-87. [PMID: 32254618 DOI: 10.1039/c8tb01613e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
26 Saleh T, Soudi T, Shojaosadati SA. Redox responsive curcumin-loaded human serum albumin nanoparticles: Preparation, characterization and in vitro evaluation. International Journal of Biological Macromolecules 2018;114:759-66. [DOI: 10.1016/j.ijbiomac.2018.03.085] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
27 Andersen AHF, Riber CF, Zuwala K, Tolstrup M, Dagnæs-Hansen F, Denton PW, Zelikin AN. Long-Acting, Potent Delivery of Combination Antiretroviral Therapy. ACS Macro Lett 2018;7:587-91. [PMID: 35632936 DOI: 10.1021/acsmacrolett.8b00179] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
28 Wang Y, Wu C. Site-Specific Conjugation of Polymers to Proteins. Biomacromolecules 2018;19:1804-25. [DOI: 10.1021/acs.biomac.8b00248] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 12.4] [Reference Citation Analysis]
29 Lu H, Stenzel MH. Multicellular Tumor Spheroids (MCTS) as a 3D In Vitro Evaluation Tool of Nanoparticles. Small 2018;14:1702858. [DOI: 10.1002/smll.201702858] [Cited by in Crossref: 109] [Cited by in F6Publishing: 114] [Article Influence: 21.8] [Reference Citation Analysis]
30 Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018;9:259-72. [DOI: 10.1039/c7py01603d] [Cited by in Crossref: 220] [Cited by in F6Publishing: 228] [Article Influence: 44.0] [Reference Citation Analysis]
31 Cassano R, Mellace S, Trombino S. Responsive polymer-biomacromolecule conjugates for drug delivery. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 2018. [DOI: 10.1016/b978-0-08-101997-9.00020-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
32 Kudarha RR, Sawant KK. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Materials Science and Engineering: C 2017;81:607-26. [DOI: 10.1016/j.msec.2017.08.004] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 10.7] [Reference Citation Analysis]
33 Han H, Wang J, Chen T, Yin L, Jin Q, Ji J. Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. Journal of Colloid and Interface Science 2017;507:217-24. [DOI: 10.1016/j.jcis.2017.07.047] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
34 An FF, Zhang XH. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics 2017;7:3667-89. [PMID: 29109768 DOI: 10.7150/thno.19365] [Cited by in Crossref: 227] [Cited by in F6Publishing: 261] [Article Influence: 37.8] [Reference Citation Analysis]
35 Das RP, Singh BG, Kunwar A, Ramani MV, Subbaraju GV, Hassan PA, Priyadarsini KI. Tuning the binding, release and cytotoxicity of hydrophobic drug by Bovine Serum Albumin nanoparticles: Influence of particle size. Colloids Surf B Biointerfaces 2017;158:682-8. [PMID: 28783613 DOI: 10.1016/j.colsurfb.2017.07.048] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
36 Zhou Y, Song J, Wang L, Xue X, Liu X, Xie H, Huang X. In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes. Biomacromolecules 2017;18:2446-53. [DOI: 10.1021/acs.biomac.7b00598] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
37 Negut I, Grumezescu V, Dorcioman G. Progress of nanoparticles research in cancer therapy and diagnosis. Nanostructures for Cancer Therapy 2017. [DOI: 10.1016/b978-0-323-46144-3.00006-4] [Reference Citation Analysis]
38 Smith AAA, Zuwala K, Pilgram O, Johansen KS, Tolstrup M, Dagnæs-Hansen F, Zelikin AN. Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Lett 2016;5:1089-94. [PMID: 35658186 DOI: 10.1021/acsmacrolett.6b00544] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]