BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khine YY, Jiang Y, Dag A, Lu H, Stenzel MH. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs: Dual-Responsive pH and Temperature Sensitive Nanoparticles…. Macromol Biosci 2015;15:1091-104. [DOI: 10.1002/mabi.201500057] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
Number Citing Articles
1 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
2 Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021;332:127-47. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Cited by in Crossref: 88] [Cited by in F6Publishing: 97] [Article Influence: 44.0] [Reference Citation Analysis]
3 Alejo T, Uson L, Arruebo M. Reversible stimuli-responsive nanomaterials with on-off switching ability for biomedical applications. Journal of Controlled Release 2019;314:162-76. [DOI: 10.1016/j.jconrel.2019.10.036] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
4 Luo T, Han J, Zhao F, Pan X, Tian B, Ding X, Zhang J. Redox-sensitive micelles based on retinoic acid modified chitosan conjugate for intracellular drug delivery and smart drug release in cancer therapy. Carbohydrate Polymers 2019;215:8-19. [DOI: 10.1016/j.carbpol.2019.03.064] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
5 Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019;138:167-92. [PMID: 30315832 DOI: 10.1016/j.addr.2018.10.005] [Cited by in Crossref: 158] [Cited by in F6Publishing: 167] [Article Influence: 39.5] [Reference Citation Analysis]
6 Brzeziński M, Wedepohl S, Kost B, Calderón M. Nanoparticles from supramolecular polylactides overcome drug resistance of cancer cells. European Polymer Journal 2018;109:117-23. [DOI: 10.1016/j.eurpolymj.2018.08.060] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
7 Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chemico-Biological Interactions 2018;295:20-37. [DOI: 10.1016/j.cbi.2018.07.016] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 9.4] [Reference Citation Analysis]
8 Khine YY, Ganda S, Stenzel MH. Covalent Tethering of Temperature Responsive pNIPAm onto TEMPO-Oxidized Cellulose Nanofibrils via Three-Component Passerini Reaction. ACS Macro Lett 2018;7:412-8. [PMID: 35619354 DOI: 10.1021/acsmacrolett.8b00051] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
9 Chen H, Lo Y, Wu P, Lo P, Wang L. Length effect of methoxy poly(ethylene oxide)- b -[poly(ε-caprolactone)- g -poly(methacrylic acid)] copolymers on cisplatin delivery. Colloids and Surfaces B: Biointerfaces 2017;156:243-53. [DOI: 10.1016/j.colsurfb.2017.05.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
10 Chmielarz P. Synthesis of inositol-based star polymers through low ppm ATRP methods: Inositol-based Star Polymers through Low ppm ATRP Methods. Polym Adv Technol 2017;28:1804-12. [DOI: 10.1002/pat.4065] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
11 Bogomolova A, Kaberov L, Sedlacek O, Filippov S, Stepanek P, Král V, Wang X, Liu S, Ye X, Hruby M. Double stimuli-responsive polymer systems: How to use crosstalk between pH- and thermosensitivity for drug depots. European Polymer Journal 2016;84:54-64. [DOI: 10.1016/j.eurpolymj.2016.09.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
12 Ryskulova K, Rao Gulur Srinivas A, Kerr-Phillips T, Peng H, Barker D, Travas-Sejdic J, Hoogenboom R. Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. Polymers (Basel) 2016;8:E365. [PMID: 30974643 DOI: 10.3390/polym8100365] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
13 Ng WS, Forbes E, Franks GV, Connal LA. Xanthate-Functional Temperature-Responsive Polymers: Effect on Lower Critical Solution Temperature Behavior and Affinity toward Sulfide Surfaces. Langmuir 2016;32:7443-51. [DOI: 10.1021/acs.langmuir.6b00211] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, Deng L, Dong A, Liu J. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS Appl Mater Interfaces 2016;8:10726-36. [PMID: 27058429 DOI: 10.1021/acsami.6b01501] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
15 de Jongh PAJM, Mortiboy A, Sulley GS, Bennett MR, Anastasaki A, Wilson P, Haddleton DM, Kempe K. Dual Stimuli-Responsive Comb Polymers from Modular N-Acylated Poly(aminoester)-Based Macromonomers. ACS Macro Lett 2016;5:321-5. [PMID: 35614728 DOI: 10.1021/acsmacrolett.5b00904] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
16 Wang L, Tian B, Zhang J, Li K, Liang Y, Sun Y, Ding Y, Han J. Coordinated pH/redox dual-sensitive and hepatoma-targeted multifunctional polymeric micelle system for stimuli-triggered doxorubicin release: Synthesis, characterization and in vitro evaluation. International Journal of Pharmaceutics 2016;501:221-35. [DOI: 10.1016/j.ijpharm.2016.02.002] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
17 Weaver LG, Stockmann R, Postma A, Thang SH. Multi-responsive (diethylene glycol)methyl ether methacrylate (DEGMA)-based copolymer systems. RSC Adv 2016;6:90923-33. [DOI: 10.1039/c6ra14425j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
18 Truong NP, Whittaker MR, Anastasaki A, Haddleton DM, Quinn JF, Davis TP. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). Polym Chem 2016;7:430-40. [DOI: 10.1039/c5py01467k] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 9.9] [Reference Citation Analysis]