BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim Y, Furlan A, Borhani AA, Bae KT. Computer-aided diagnosis program for classifying the risk of hepatocellular carcinoma on MR images following liver imaging reporting and data system (LI-RADS). J Magn Reson Imaging. 2018;47:710-722. [PMID: 28556283 DOI: 10.1002/jmri.25772] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Osho A, Rich NE, Singal AG. Role of imaging in management of hepatocellular carcinoma: surveillance, diagnosis, and treatment response. Hepatoma Res 2020;6:55. [PMID: 32944652 DOI: 10.20517/2394-5079.2020.42] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gruttadauria S, Pagano D, Corsini LR, Cintorino D, Li Petri S, Calamia S, Seidita A, di Francesco F. Impact of margin status on long-term results of liver resection for hepatocellular carcinoma: single-center time-to-recurrence analysis. Updates Surg 2020;72:109-17. [PMID: 31625024 DOI: 10.1007/s13304-019-00686-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chen A, Zhu L, Zang H, Ding Z, Zhan S. Computer-aided diagnosis and decision-making system for medical data analysis: A case study on prostate MR images. Journal of Management Science and Engineering 2019;4:266-78. [DOI: 10.1016/j.jmse.2020.01.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ichikawa S, Motosugi U, Oishi N, Shimizu T, Wakayama T, Enomoto N, Matsuda M, Onishi H. Ring-Like Enhancement of Hepatocellular Carcinoma in Gadoxetic Acid–Enhanced Multiphasic Hepatic Arterial Phase Imaging With Differential Subsampling With Cartesian Ordering. Invest Radiol 2018;53:191-9. [DOI: 10.1097/rli.0000000000000428] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
5 Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images.BMC Med Imaging. 2019;19:23. [PMID: 30866850 DOI: 10.1186/s12880-019-0321-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
6 Elena Laino M, Viganò L, Ammirabile A, Lofino L, Generali E, Francone M, Lleo A, Saba L, Savevski V. The added value of Artificial Intelligence to LI-RADS categorization: a systematic review. European Journal of Radiology 2022. [DOI: 10.1016/j.ejrad.2022.110251] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Alksas A, Shehata M, Saleh GA, Shaffie A, Soliman A, Ghazal M, Khelifi A, Khalifeh HA, Razek AA, Giridharan GA, El-Baz A. A novel computer-aided diagnostic system for accurate detection and grading of liver tumors. Sci Rep 2021;11:13148. [PMID: 34162893 DOI: 10.1038/s41598-021-91634-0] [Reference Citation Analysis]
8 Zhang T, Huang ZX, Wei Y, Jiang HY, Chen J, Liu XJ, Cao LK, Duan T, He XP, Xia CC, Song B. Hepatocellular carcinoma: Can LI-RADS v2017 with gadoxetic-acid enhancement magnetic resonance and diffusion-weighted imaging improve diagnostic accuracy? World J Gastroenterol 2019; 25(5): 622-631 [PMID: 30774276 DOI: 10.3748/wjg.v25.i5.622] [Cited by in CrossRef: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]