BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020;11:820-37. [PMID: 32039571 DOI: 10.1002/jcsm.12550] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Martin A, Gallot YS, Freyssenet D. Molecular mechanisms of cancer cachexia-related loss of skeletal muscle mass: data analysis from preclinical and clinical studies. J Cachexia Sarcopenia Muscle 2023. [PMID: 36864755 DOI: 10.1002/jcsm.13073] [Reference Citation Analysis]
2 Neyroud D, Laitano O, Dasgupta A, Lopez C, Schmitt R, Schneider J, Hammers D, Sweeney L, Walter G, Doles J, Judge S, Judge A. Blocking muscle wasting via deletion of the muscle-specific E3 ubiquitin ligase MuRF1 impedes pancreatic tumor growth. Res Sq 2023:rs. [PMID: 36798266 DOI: 10.21203/rs.3.rs-2524562/v1] [Reference Citation Analysis]
3 Murphy BT, Mackrill JJ, O'Halloran KD. Impact of cancer cachexia on respiratory muscle function and the therapeutic potential of exercise. J Physiol 2022;600:4979-5004. [PMID: 36251564 DOI: 10.1113/JP283569] [Reference Citation Analysis]
4 Yu Y, Ahmed A, Lai H, Cheng W, Yang J, Chang W, Chen L, Shan Y, Ma W. Review of the endocrine organ–like tumor hypothesis of cancer cachexia in pancreatic ductal adenocarcinoma. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1057930] [Reference Citation Analysis]
5 Aberle MR, Vaes RD, van de Worp WR, Dubois LJ, Lieuwes NG, Biemans R, Langen RC, van Schooten F, van Dam RM, Damink SWO, Rensen SS. Patient‐derived pancreatic tumour organoid implantation establishes novel pre‐cachexia mouse models. JCSM Rapid Communications 2022. [DOI: 10.1002/rco2.71] [Reference Citation Analysis]
6 Lemecha M, Chalise JP, Takamuku Y, Zhang G, Yamakawa T, Larson G, Itakura K. Lcn2 mediates adipocyte-muscle-tumor communication and hypothermia in pancreatic cancer cachexia. Mol Metab 2022;66:101612. [PMID: 36243318 DOI: 10.1016/j.molmet.2022.101612] [Reference Citation Analysis]
7 Zheng Y, Zhang Y, Ma J, Sang C, Yang J. A Carabrane-Type Sesquiterpenolide Carabrone from Carpesium cernuum Inhibits SW1990 Pancreatic Cancer Cells by Inducing Ferroptosis. Molecules 2022;27:5841. [DOI: 10.3390/molecules27185841] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Hildebrandt W, Keck J, Schmich S, Bonaterra GA, Wilhelm B, Schwarzbach H, Eva A, Bertoune M, Slater EP, Fendrich V, Kinscherf R. Inflammation and Wasting of Skeletal Muscles in Kras-p53-Mutant Mice with Intraepithelial Neoplasia and Pancreatic Cancer-When Does Cachexia Start? Cells 2022;11. [PMID: 35626644 DOI: 10.3390/cells11101607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Tao H, Tang X, Tao H. TLR4 activation inhibits the proliferation and osteogenic differentiation of skeletal muscle stem cells by downregulating LGI1. J Physiol Biochem 2022. [PMID: 35294724 DOI: 10.1007/s13105-022-00888-3] [Reference Citation Analysis]
10 Pryce BR, Guttridge DC. NF-kB Signaling in the Macroenvironment of Cancer Cachexia. The Systemic Effects of Advanced Cancer 2022. [DOI: 10.1007/978-3-031-09518-4_7] [Reference Citation Analysis]
11 Lin KH, Wilson GM, Blanco R, Steinert ND, Zhu WG, Coon JJ, Hornberger TA. A deep analysis of the proteomic and phosphoproteomic alterations that occur in skeletal muscle after the onset of immobilization. J Physiol 2021;599:2887-906. [PMID: 33873245 DOI: 10.1113/JP281071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
12 Hyatt HW, Powers SK. Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity. Antioxidants (Basel) 2021;10:588. [PMID: 33920468 DOI: 10.3390/antiox10040588] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
13 Martin A, Freyssenet D. Phenotypic features of cancer cachexia-related loss of skeletal muscle mass and function: lessons from human and animal studies. J Cachexia Sarcopenia Muscle 2021;12:252-73. [PMID: 33783983 DOI: 10.1002/jcsm.12678] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
14 Neyroud D, Nosacka RL, Callaway CS, Trevino JG, Hu H, Judge SM, Judge AR. FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. J Cachexia Sarcopenia Muscle 2021;12:421-42. [PMID: 33527776 DOI: 10.1002/jcsm.12666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Nagano A, Wakabayashi H, Maeda K, Kokura Y, Miyazaki S, Mori T, Fujiwara D. Respiratory Sarcopenia and Sarcopenic Respiratory Disability: Concepts, Diagnosis, and Treatment. J Nutr Health Aging 2021;25:507-15. [PMID: 33786569 DOI: 10.1007/s12603-021-1587-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
16 Rosa-Caldwell ME, Benson CA, Lee DE, Brown JL, Washington TA, Greene NP, Wiggs MP. Mitochondrial Function and Protein Turnover in the Diaphragm are Altered in LLC Tumor Model of Cancer Cachexia. Int J Mol Sci 2020;21:E7841. [PMID: 33105841 DOI: 10.3390/ijms21217841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang Y, Zhong X, Zhou L, Lu J, Jiang B, Liu C, Guo J. Prognostic Biomarkers for Pancreatic Ductal Adenocarcinoma: An Umbrella Review. Front Oncol 2020;10:1466. [PMID: 33042793 DOI: 10.3389/fonc.2020.01466] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
18 VanderVeen BN, Murphy EA, Carson JA. The Impact of Immune Cells on the Skeletal Muscle Microenvironment During Cancer Cachexia. Front Physiol 2020;11:1037. [PMID: 32982782 DOI: 10.3389/fphys.2020.01037] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
19 Judge SM, Deyhle MR, Neyroud D, Nosacka RL, D'Lugos AC, Cameron ME, Vohra RS, Smuder AJ, Roberts BM, Callaway CS, Underwood PW, Chrzanowski SM, Batra A, Murphy ME, Heaven JD, Walter GA, Trevino JG, Judge AR. MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Res 2020;80:1861-74. [PMID: 32132110 DOI: 10.1158/0008-5472.CAN-19-1558] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
20 Nosacka RL, Delitto AE, Delitto D, Patel R, Judge SM, Trevino JG, Judge AR. Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. J Cachexia Sarcopenia Muscle 2020;11:820-37. [PMID: 32039571 DOI: 10.1002/jcsm.12550] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]