BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grimm A, Meyer H, Nickel MD, Nittka M, Raithel E, Chaudry O, Friedberger A, Uder M, Kemmler W, Engelke K, Quick HH. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh. J Cachexia Sarcopenia Muscle 2018;9:1093-100. [PMID: 30221479 DOI: 10.1002/jcsm.12343] [Cited by in Crossref: 31] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Borghi S, Bonato M, La Torre A, Banfi G, Vitale JA. Interrelationship among thigh intermuscular adipose tissue, cross-sectional area, muscle strength, and functional mobility in older subjects. Medicine (Baltimore) 2022;101:e29744. [PMID: 35777009 DOI: 10.1097/MD.0000000000029744] [Reference Citation Analysis]
2 Duncan S, Walker A, Kumar S, Dundas K, Bell K, Wallis A, Surjan Y, Aly F, Lee M. Novel methodology to quantify dehydration in head and neck cancer radiotherapy using DIXON MRI. J Med Radiat Sci 2022. [PMID: 35762562 DOI: 10.1002/jmrs.605] [Reference Citation Analysis]
3 Engelke K, Ghasemikaram M, Chaudry O, Uder M, Nagel AM, Jakob F, Kemmler W. The effect of ageing on fat infiltration of thigh and paraspinal muscles in men. Aging Clin Exp Res 2022. [PMID: 35633478 DOI: 10.1007/s40520-022-02149-1] [Reference Citation Analysis]
4 Wang TY, Nie P, Zhao X, Wang HX, Wan GY, Zhou RZ, Zhong X, Zhang Y, Yu TB, Hao DP. Proton density fat fraction measurements of rotator cuff muscles: Accuracy, repeatability, and reproducibility across readers and scanners. Magn Reson Imaging 2022:S0730-725X(22)00079-0. [PMID: 35623416 DOI: 10.1016/j.mri.2022.05.013] [Reference Citation Analysis]
5 Huang Y, Wang L, Luo B, Yang K, Zeng X, Chen J, Zhang Z, Li Y, Cheng X, He B. Associations of Lumber Disc Degeneration With Paraspinal Muscles Myosteatosis in Discogenic Low Back Pain. Front Endocrinol 2022;13:891088. [DOI: 10.3389/fendo.2022.891088] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Trueb P, Getzmann JM, Ried E, Deininger-czermak E, Garcia Schueler HI, Guggenberger R. Comparison of Muscle Fat Fraction Measurements in the Lower Spine Musculature with Non-Contrast-Enhanced CT and Different MR Imaging Sequences. European Journal of Radiology 2022. [DOI: 10.1016/j.ejrad.2022.110260] [Reference Citation Analysis]
7 Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med 2022. [PMID: 35041137 DOI: 10.1007/s11547-022-01450-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Nakao Y, Uchiyama Y, Honda K, Yamashita T, Saito S, Domen K. Age-related composition changes in swallowing-related muscles: a Dixon MRI study. Aging Clin Exp Res 2021;33:3205-13. [PMID: 33904143 DOI: 10.1007/s40520-021-01859-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Leigheb M, de Sire A, Colangelo M, Zagaria D, Grassi FA, Rena O, Conte P, Neri P, Carriero A, Sacchetti GM, Penna F, Caretti G, Ferraro E. Sarcopenia Diagnosis: Reliability of the Ultrasound Assessment of the Tibialis Anterior Muscle as an Alternative Evaluation Tool. Diagnostics (Basel) 2021;11:2158. [PMID: 34829505 DOI: 10.3390/diagnostics11112158] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
10 Belzunce MA, Henckel J, Di Laura A, Hart A. Intramuscular fat in gluteus maximus for different levels of physical activity. Sci Rep 2021;11:21401. [PMID: 34725385 DOI: 10.1038/s41598-021-00790-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Pei XJ, Lian YF, Yan YC, Jiang T, Liu AJ, Shi QL, Pan ZY. Fat fraction quantification of lumbar spine: comparison of T1-weighted two-point Dixon and single-voxel magnetic resonance spectroscopy in diagnosis of multiple myeloma. Diagn Interv Radiol 2020;26:492-7. [PMID: 32755881 DOI: 10.5152/dir.2020.19401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zink-Rückel C, Chaudry O, Engelke K, Ghasemikaram M, Kohl M, Uder M, Kemmler W. Once Weekly Whole-Body Electromyostimulation Enhances Muscle Quality in Men: Data of the Randomized Controlled Franconian Electromyostimulation and Golf Study. Front Physiol 2021;12:700423. [PMID: 34366890 DOI: 10.3389/fphys.2021.700423] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Vitale JA, Sansoni V, Faraldi M, Messina C, Verdelli C, Lombardi G, Corbetta S. Circulating Carboxylated Osteocalcin Correlates With Skeletal Muscle Mass and Risk of Fall in Postmenopausal Osteoporotic Women. Front Endocrinol (Lausanne) 2021;12:669704. [PMID: 34025583 DOI: 10.3389/fendo.2021.669704] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Yu F, He B, Chen L, Wang F, Zhu H, Dong Y, Pan S. Intermuscular Fat Content in Young Chinese Men With Newly Diagnosed Type 2 Diabetes: Based on MR mDIXON-Quant Quantitative Technique. Front Endocrinol (Lausanne) 2021;12:536018. [PMID: 33868161 DOI: 10.3389/fendo.2021.536018] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Ruby L, Sanabria SJ, Martini K, Frauenfelder T, Jukema GN, Goksel O, Rominger MB. Quantification of immobilization-induced changes in human calf muscle using speed-of-sound ultrasound: An observational pilot study. Medicine (Baltimore) 2021;100:e23576. [PMID: 33725923 DOI: 10.1097/MD.0000000000023576] [Reference Citation Analysis]
16 Zhang Q, Zhao Y, Wu J, Xie L, Chen A, Liu Y, Song Q, Li J, Wu T, Xie L, Liu A. Quantification of Hepatic Fat Fraction in Patients With Nonalcoholic Fatty Liver Disease: Comparison of Multimaterial Decomposition Algorithm and Fat (Water)-Based Material Decomposition Algorithm Using Single-Source Dual-Energy Computed Tomography. J Comput Assist Tomogr 2021;45:12-7. [PMID: 33186174 DOI: 10.1097/RCT.0000000000001112] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Ghasemikaram M, Chaudry O, Nagel AM, Uder M, Jakob F, Kemmler W, Kohl M, Engelke K. Effects of 16 months of high intensity resistance training on thigh muscle fat infiltration in elderly men with osteosarcopenia. Geroscience 2021;43:607-17. [PMID: 33449309 DOI: 10.1007/s11357-020-00316-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
18 Anker MS, Springer J, Coats AJ, von Haehling S. The 10th year of the Journal of Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia Muscle 2020;11:1390-5. [PMID: 33340288 DOI: 10.1002/jcsm.12657] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Vitale JA, Bonato M, Borghi S, Messina C, Albano D, Corbetta S, Sconfienza LM, Banfi G. Home-Based Resistance Training for Older Subjects during the COVID-19 Outbreak in Italy: Preliminary Results of a Six-Months RCT. Int J Environ Res Public Health 2020;17:E9533. [PMID: 33352676 DOI: 10.3390/ijerph17249533] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
20 Ding J, Cao P, Chang HC, Gao Y, Chan SHS, Vardhanabhuti V. Deep learning-based thigh muscle segmentation for reproducible fat fraction quantification using fat-water decomposition MRI. Insights Imaging 2020;11:128. [PMID: 33252711 DOI: 10.1186/s13244-020-00946-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chaudry O, Friedberger A, Grimm A, Uder M, Nagel AM, Kemmler W, Engelke K. Segmentation of the fascia lata and reproducible quantification of intermuscular adipose tissue (IMAT) of the thigh. MAGMA 2021;34:367-76. [PMID: 32761398 DOI: 10.1007/s10334-020-00878-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Nakao Y, Yamashita T, Honda K, Katsuura T, Hama Y, Nakamura Y, Ando K, Ishikura R, Kodama N, Uchiyama Y, Domen K. Association Among Age-Related Tongue Muscle Abnormality, Tongue Pressure, and Presbyphagia: A 3D MRI Study. Dysphagia 2021;36:483-91. [PMID: 32743742 DOI: 10.1007/s00455-020-10165-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sanz-Requena R, Martínez-Arnau FM, Pablos-Monzó A, Flor-Rufino C, Barrachina-Igual J, García-Martí G, Martí-Bonmatí L, Pérez-Ros P. The Role of Imaging Biomarkers in the Assessment of Sarcopenia. Diagnostics (Basel) 2020;10:E534. [PMID: 32751452 DOI: 10.3390/diagnostics10080534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
24 Kim S, Kim TH, Jeong CW, Lee C, Noh S, Kim JE, Yoon KH. Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity. Sci Rep 2020;10:10452. [PMID: 32591563 DOI: 10.1038/s41598-020-67461-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Sinha U, Malis V, Chen JS, Csapo R, Kinugasa R, Narici MV, Sinha S. Role of the Extracellular Matrix in Loss of Muscle Force With Age and Unloading Using Magnetic Resonance Imaging, Biochemical Analysis, and Computational Models. Front Physiol 2020;11:626. [PMID: 32625114 DOI: 10.3389/fphys.2020.00626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
26 Borga M, Ahlgren A, Romu T, Widholm P, Dahlqvist Leinhard O, West J. Reproducibility and repeatability of MRI‐based body composition analysis. Magn Reson Med 2020;84:3146-56. [DOI: 10.1002/mrm.28360] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
27 Ruby L, Kunut A, Nakhostin DN, Huber FA, Finkenstaedt T, Frauenfelder T, Sanabria SJ, Rominger MB. Speed of sound ultrasound: comparison with proton density fat fraction assessed with Dixon MRI for fat content quantification of the lower extremity. Eur Radiol 2020;30:5272-80. [DOI: 10.1007/s00330-020-06885-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020;10:E432. [PMID: 32164381 DOI: 10.3390/biom10030432] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
29 Burian E, Franz D, Greve T, Dieckmeyer M, Holzapfel C, Drabsch T, Sollmann N, Probst M, Kirschke JS, Rummeny EJ, Zimmer C, Hauner H, Karampinos DC, Baum T. Age- and gender-related variations of cervical muscle composition using chemical shift encoding-based water-fat MRI. Eur J Radiol 2020;125:108904. [PMID: 32088656 DOI: 10.1016/j.ejrad.2020.108904] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
30 Shenvi SD, Taber DJ, Hardie AD, Botstein JO, Mcgillicuddy JW. Assessment of magnetic resonance imaging derived fat fraction as a sensitive and reliable predictor of myosteatosis in liver transplant recipients. HPB 2020;22:102-8. [DOI: 10.1016/j.hpb.2019.06.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Burian E, Inhuber S, Schlaeger S, Dieckmeyer M, Klupp E, Franz D, Weidlich D, Sollmann N, Löffler M, Schwirtz A, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC, Baum T. Association of thigh and paraspinal muscle composition in young adults using chemical shift encoding-based water-fat MRI. Quant Imaging Med Surg 2020;10:128-36. [PMID: 31956536 DOI: 10.21037/qims.2019.11.08] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C. Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 2020;94:117-33. [PMID: 31892637 DOI: 10.1212/WNL.0000000000008811] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
33 Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol 2020;30:2199-208. [DOI: 10.1007/s00330-019-06573-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 79] [Article Influence: 12.0] [Reference Citation Analysis]
34 Inhuber S, Sollmann N, Schlaeger S, Dieckmeyer M, Burian E, Kohlmeyer C, Karampinos DC, Kirschke JS, Baum T, Kreuzpointner F, Schwirtz A. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging. Eur Radiol Exp 2019;3:45. [PMID: 31748839 DOI: 10.1186/s41747-019-0123-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
35 Codari M, Zanardo M, di Sabato ME, Nocerino E, Messina C, Sconfienza LM, Sardanelli F. MRI-Derived Biomarkers Related to Sarcopenia: A Systematic Review. J Magn Reson Imaging 2020;51:1117-27. [PMID: 31515891 DOI: 10.1002/jmri.26931] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
36 Davis DL, Zhuo J, Almardawi R, Mulligan ME, Resnik CS, Abdullah SB, Khalifah HA, Henn RF III, Gilotra MN, Hasan SA, Gullapalli RP. Association of Patient Self-Reported Shoulder Scores to Quantitative and Semiquantitative MRI Measures of Rotator Cuff Intramuscular Fatty Infiltration: A Pilot Study. AJR Am J Roentgenol 2019;213:1307-14. [PMID: 31509429 DOI: 10.2214/AJR.19.21218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
37 Farrow M, Grainger AJ, Tan AL, Buch MH, Emery P, Ridgway JP, Feiweier T, Tanner SF, Biglands J. Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle. Br J Radiol 2019;92:20190143. [PMID: 31298948 DOI: 10.1259/bjr.20190143] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
38 Grimm A, Nickel MD, Chaudry O, Uder M, Jakob F, Kemmler W, Quick HH, Engelke K. Feasibility of Dixon magnetic resonance imaging to quantify effects of physical training on muscle composition—A pilot study in young and healthy men. European Journal of Radiology 2019;114:160-6. [DOI: 10.1016/j.ejrad.2019.03.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Nachit M, Leclercq I. Emerging awareness on the importance of skeletal muscle in liver diseases: time to dig deeper into mechanisms! Clinical Science 2019;133:465-81. [DOI: 10.1042/cs20180421] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
40 Scherbakov N, Doehner W. Cachexia as a common characteristic in multiple chronic disease. J Cachexia Sarcopenia Muscle 2018;9:1189-91. [PMID: 30637985 DOI: 10.1002/jcsm.12388] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 6.7] [Reference Citation Analysis]
41 Grimm A, Meyer H, Nickel MD, Nittka M, Raithel E, Chaudry O, Friedberger A, Uder M, Kemmler W, Engelke K, Quick HH. Repeatability of Dixon magnetic resonance imaging and magnetic resonance spectroscopy for quantitative muscle fat assessments in the thigh. J Cachexia Sarcopenia Muscle 2018;9:1093-100. [PMID: 30221479 DOI: 10.1002/jcsm.12343] [Cited by in Crossref: 31] [Cited by in F6Publishing: 41] [Article Influence: 7.8] [Reference Citation Analysis]