BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cackowski FC, Eber MR, Rhee J, Decker AM, Yumoto K, Berry JE, Lee E, Shiozawa Y, Jung Y, Aguirre-Ghiso JA, Taichman RS. Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy. J Cell Biochem 2017;118:891-902. [PMID: 27753136 DOI: 10.1002/jcb.25768] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Gelman IH. The genomic regulation of metastatic dormancy. Cancer Metastasis Rev 2023. [PMID: 36600151 DOI: 10.1007/s10555-022-10076-w] [Reference Citation Analysis]
2 Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022;14. [PMID: 36497496 DOI: 10.3390/cancers14236009] [Reference Citation Analysis]
3 Bort A, G. Sánchez B, León C, Nozal L, Mora-rodríguez JM, Castro F, Crego AL, Díaz-laviada I. Metabolic fingerprinting of chemotherapy-resistant prostate cancer stem cells. An untargeted metabolomic approach by liquid chromatography-mass spectrometry. Front Cell Dev Biol 2022;10:1005675. [DOI: 10.3389/fcell.2022.1005675] [Reference Citation Analysis]
4 Liu R, Su S, Liu K, Xing J, Stangis M, Jacho DP, Yildirim-ayan ED, Yu H, Chen B, Li X. Dormancy of disseminated prostate cancer cells in the bone cortex is induced by osteoblasts.. [DOI: 10.1101/2022.09.02.506436] [Reference Citation Analysis]
5 Saeed MU, Hussain N, Zulfiqar I, Raza A, Ghauri MA, Bilal M. Tumor cell dormancy: Molecular mechanisms, and pharmacological approaches to target dormant cells for countering tumor. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103645] [Reference Citation Analysis]
6 Mazumder S, Ghosh TM, Mukherjee UK, Chakravarti S, Amiri F, Hemmati F, Mistriotis P, Elhussin I, Salam A, Dean-colomb W, Li F, Yates C, Arnold RD, Mitra AK. Integrating pharmacogenomics data-driven prediction with bulk and single-cell RNAseq to demonstrate the efficacy of an NAMPT inhibitor against aggressive, taxane-resistant, and stem-like cells in lethal prostate cancer.. [DOI: 10.1101/2022.07.20.500378] [Reference Citation Analysis]
7 Zhang M, Peng R, Wang H, Yang Z, Zhang H, Zhang Y, Wang M, Wang H, Lin J, Zhao Q, Liu J. Nanog mediated by FAO/ACLY signaling induces cellular dormancy in colorectal cancer cells. Cell Death Dis 2022;13:159. [PMID: 35177584 DOI: 10.1038/s41419-022-04606-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Zaragoza-Ojeda M, Torres-Flores U, Rodríguez-Leviz A, Arenas-Huertero F. Benzo[ghi]perylene induces cellular dormancy signaling and endoplasmic reticulum stress in NL-20 human bronchial epithelial cells. Toxicol Appl Pharmacol 2022;:115925. [PMID: 35182551 DOI: 10.1016/j.taap.2022.115925] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Khalil BD, Sanchez R, Rahman T, Rodriguez-Tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Nobre AR, Singh D, Kale N, Sproll KC, Sosa MS, Aguirre-Ghiso JA. An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. J Exp Med 2022;219:e20210836. [PMID: 34812843 DOI: 10.1084/jem.20210836] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
10 Cackowski FC, Heath EI. Prostate cancer dormancy and recurrence. Cancer Lett 2022;524:103-8. [PMID: 34624433 DOI: 10.1016/j.canlet.2021.09.037] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
11 Pulianmackal AJ, Sun D, Yumoto K, Li Z, Chen YC, Patel MV, Wang Y, Yoon E, Pearson A, Yang Q, Taichman R, Cackowski FC, Buttitta LA. Monitoring Spontaneous Quiescence and Asynchronous Proliferation-Quiescence Decisions in Prostate Cancer Cells. Front Cell Dev Biol 2021;9:728663. [PMID: 34957090 DOI: 10.3389/fcell.2021.728663] [Reference Citation Analysis]
12 Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021;13:5639. [PMID: 34830794 DOI: 10.3390/cancers13225639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Wang Y, Herroon MK, Zielske SP, Ellis L, Podgorski I, Taichman RS, Cackowski FC. Use of FVB Myc-CaP cells as an immune competent, androgen receptor positive, mouse model of prostate cancer bone metastasis. J Bone Oncol 2021;30:100386. [PMID: 34466376 DOI: 10.1016/j.jbo.2021.100386] [Reference Citation Analysis]
14 Quayle LA, Spicer A, Ottewell PD, Holen I. Transcriptomic Profiling Reveals Novel Candidate Genes and Signalling Programs in Breast Cancer Quiescence and Dormancy. Cancers (Basel) 2021;13:3922. [PMID: 34439077 DOI: 10.3390/cancers13163922] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Clements ME, Holtslander L, Edwards C, Todd V, Dooyema SDR, Bullock K, Bergdorf K, Zahnow CA, Connolly RM, Johnson RW. HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene 2021. [PMID: 34247191 DOI: 10.1038/s41388-021-01931-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Singh DK, Patel VG, Oh WK, Aguirre-Ghiso JA. Prostate Cancer Dormancy and Reactivation in Bone Marrow. J Clin Med 2021;10:2648. [PMID: 34208521 DOI: 10.3390/jcm10122648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Basu S, Dong Y, Kumar R, Jeter C, Tang DG. Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol 2021:S1044-579X(21)00122-X. [PMID: 33979674 DOI: 10.1016/j.semcancer.2021.04.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
18 Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021;18:488-505. [PMID: 33875860 DOI: 10.1038/s41571-021-00499-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
19 Akkoc Y, Peker N, Akcay A, Gozuacik D. Autophagy and Cancer Dormancy. Front Oncol 2021;11:627023. [PMID: 33816262 DOI: 10.3389/fonc.2021.627023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
20 Hoque M, Wai Wong S, Recasens A, Abbassi R, Nguyen N, Zhang D, Stashko MA, Wang X, Frye S, Day BW, Baell J, Munoz L. MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochem Pharmacol 2021;186:114437. [PMID: 33571503 DOI: 10.1016/j.bcp.2021.114437] [Reference Citation Analysis]
21 Chen CJ, Liu YP. MERTK Inhibition: Potential as a Treatment Strategy in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2021;14:130. [PMID: 33562150 DOI: 10.3390/ph14020130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
22 Khalil BD, Sanchez R, Rahman T, Rodriguez-tirado C, Moritsch S, Martinez AR, Miles B, Farias E, Mezei M, Cheung JF, Nobre AR, Kale N, Sproll KC, Sosa MS, Aguirre-ghiso JA. A specific agonist of the orphan nuclear receptor NR2F1 suppresses metastasis through the induction of cancer cell dormancy.. [DOI: 10.1101/2021.01.30.428967] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2021;101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 13.7] [Reference Citation Analysis]
24 Jung Y, Cackowski FC, Yumoto K, Decker AM, Wang Y, Hotchkin M, Lee E, Buttitta L, Taichman RS. Abscisic acid regulates dormancy of prostate cancer disseminated tumor cells in the bone marrow. Neoplasia 2021;23:102-11. [PMID: 33296752 DOI: 10.1016/j.neo.2020.11.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ombrato L, Montagner M. Technical Advancements for Studying Immune Regulation of Disseminated Dormant Cancer Cells. Front Oncol 2020;10:594514. [PMID: 33251149 DOI: 10.3389/fonc.2020.594514] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Fang C, Kang Y. Cellular plasticity in bone metastasis. Bone 2020;:115693. [PMID: 33069922 DOI: 10.1016/j.bone.2020.115693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Klein CA. Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer 2020;20:681-94. [DOI: 10.1038/s41568-020-00300-6] [Cited by in Crossref: 83] [Cited by in F6Publishing: 88] [Article Influence: 27.7] [Reference Citation Analysis]
28 Risson E, Nobre AR, Maguer-Satta V, Aguirre-Ghiso JA. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat Cancer 2020;1:672-80. [PMID: 33681821 DOI: 10.1038/s43018-020-0088-5] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 21.7] [Reference Citation Analysis]
29 Manjili MH. The premise of personalized immunotherapy for cancer dormancy. Oncogene 2020;39:4323-30. [PMID: 32322001 DOI: 10.1038/s41388-020-1295-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Wang Y, Singhal U, Qiao Y, Kasputis T, Chung JS, Zhao H, Chammaa F, Belardo JA, Roth TM, Zhang H, Zaslavsky AB, Palapattu GS, Pienta KJ, Chinnaiyan AM, Taichman RS, Cackowski FC, Morgan TM. Wnt Signaling Drives Prostate Cancer Bone Metastatic Tropism and Invasion. Transl Oncol 2020;13:100747. [PMID: 32217460 DOI: 10.1016/j.tranon.2020.100747] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
31 Nicolini A, Rossi G, Ferrari P, Carpi A. Minimal residual disease in advanced or metastatic solid cancers: The G0-G1 state and immunotherapy are key to unwinding cancer complexity. Semin Cancer Biol 2020:S1044-579X(20)30075-4. [PMID: 32201368 DOI: 10.1016/j.semcancer.2020.03.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
32 Montagner M, Bhome R, Hooper S, Chakravarty P, Qin X, Sufi J, Bhargava A, Ratcliffe CDH, Naito Y, Pocaterra A, Tape CJ, Sahai E. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nat Cell Biol 2020;22:289-96. [PMID: 32094692 DOI: 10.1038/s41556-020-0474-3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
33 Guo F, Yuan D, Zhang J, Zhang H, Wang C, Zhu L, Zhang J, Pan Y, Shao C. Silencing of ARL14 Gene Induces Lung Adenocarcinoma Cells to a Dormant State. Front Cell Dev Biol 2019;7:238. [PMID: 31750299 DOI: 10.3389/fcell.2019.00238] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
34 Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019;11:E1207. [PMID: 31430951 DOI: 10.3390/cancers11081207] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 13.8] [Reference Citation Analysis]
35 Kim K, Marquez-Palencia M, Malladi S. Metastatic Latency, a Veiled Threat. Front Immunol 2019;10:1836. [PMID: 31447846 DOI: 10.3389/fimmu.2019.01836] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
36 Gao XL, Zheng M, Wang HF, Dai LL, Yu XH, Yang X, Pang X, Li L, Zhang M, Wang SS, Wu JB, Tang YJ, Liang XH, Tang YL. NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway. BMC Cancer 2019;19:743. [PMID: 31357956 DOI: 10.1186/s12885-019-5925-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
37 Zhang J, Si J, Gan L, Di C, Xie Y, Sun C, Li H, Guo M, Zhang H. Research progress on therapeutic targeting of quiescent cancer cells. Artificial Cells, Nanomedicine, and Biotechnology 2019;47:2810-9. [DOI: 10.1080/21691401.2019.1638793] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
38 Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2020;36:115-30. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
39 Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019;141:43-84. [PMID: 30691685 DOI: 10.1016/bs.acr.2018.12.002] [Cited by in Crossref: 60] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
40 Sowder ME, Johnson RW. Bone as a Preferential Site for Metastasis. JBMR Plus 2019;3:e10126. [PMID: 30918918 DOI: 10.1002/jbm4.10126] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
41 Recasens A, Munoz L. Targeting Cancer Cell Dormancy. Trends Pharmacol Sci 2019;40:128-41. [PMID: 30612715 DOI: 10.1016/j.tips.2018.12.004] [Cited by in Crossref: 133] [Cited by in F6Publishing: 107] [Article Influence: 33.3] [Reference Citation Analysis]
42 Murray NP. Minimal residual disease in prostate cancer patients after primary treatment: theoretical considerations, evidence and possible use in clinical management. Biol Res 2018;51:32. [PMID: 30180883 DOI: 10.1186/s40659-018-0180-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
43 Haydar N, Mcdonald MM. Tumor Cell Dormancy—a Hallmark of Metastatic Growth and Disease Recurrence in Bone. Curr Mol Bio Rep 2018;4:50-8. [DOI: 10.1007/s40610-018-0088-8] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
44 Yadav AS, Pandey PR, Butti R, Radharani NNV, Roy S, Bhalara SR, Gorain M, Kundu GC, Kumar D. The Biology and Therapeutic Implications of Tumor Dormancy and Reactivation. Front Oncol 2018;8:72. [PMID: 29616190 DOI: 10.3389/fonc.2018.00072] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 7.6] [Reference Citation Analysis]
45 Cackowski FC, Taichman RS. Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone 2019;119:82-6. [PMID: 29496517 DOI: 10.1016/j.bone.2018.02.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
46 Carlini MJ, Shrivastava N, Sosa MS. Epigenetic and Pluripotency Aspects of Disseminated Cancer Cells During Minimal Residual Disease. Advances in Experimental Medicine and Biology 2018. [DOI: 10.1007/978-3-319-97746-1_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
47 Park SH, Keller ET, Shiozawa Y. Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis. Calcif Tissue Int 2018;102:152-62. [PMID: 29094177 DOI: 10.1007/s00223-017-0350-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
48 Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther 2017;10:5219-28. [PMID: 29138574 DOI: 10.2147/OTT.S140854] [Cited by in Crossref: 68] [Cited by in F6Publishing: 70] [Article Influence: 11.3] [Reference Citation Analysis]
49 Decker AM, Jung Y, Cackowski FC, Yumoto K, Wang J, Taichman RS. Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow. Mol Cancer Res 2017;15:1644-55. [PMID: 28814453 DOI: 10.1158/1541-7786.MCR-17-0132] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 6.7] [Reference Citation Analysis]
50 Decker AM, Cackowski FC, Jung Y, Taichman RS. Biochemical Changes in the Niche Following Tumor Cell Invasion. J Cell Biochem 2017;118:1956-64. [PMID: 27982511 DOI: 10.1002/jcb.25843] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]