BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 2017;69:297-304. [PMID: 28374903 DOI: 10.1002/iub.1625] [Cited by in Crossref: 127] [Cited by in F6Publishing: 129] [Article Influence: 21.2] [Reference Citation Analysis]
Number Citing Articles
1 Preissner KT, Fischer S. Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. Biochim Biophys Acta Mol Cell Res 2023;1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Reference Citation Analysis]
2 Schmidt C, Schnierle BS. Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens 2023;12. [PMID: 36678486 DOI: 10.3390/pathogens12010138] [Reference Citation Analysis]
3 You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023;:e0024121. [PMID: 36625671 DOI: 10.1128/cmr.00241-21] [Reference Citation Analysis]
4 Fujii K, Kubo Y, Noguchi T, Tobita K. Effects of Bacillus subtilis Natto Strains on Antiviral Responses in Resiquimod-Stimulated Human M1-Phenotype Macrophages. Foods 2023;12. [PMID: 36673407 DOI: 10.3390/foods12020313] [Reference Citation Analysis]
5 Bose S. Viral infection and its management. Viral, Parasitic, Bacterial, and Fungal Infections 2023. [DOI: 10.1016/b978-0-323-85730-7.00021-7] [Reference Citation Analysis]
6 Sengupta A. mRNA vaccines for COVID-19. Viral Infections and Antiviral Therapies 2023. [DOI: 10.1016/b978-0-323-91814-5.00007-6] [Reference Citation Analysis]
7 Mohammadi Y, Nezafat N, Negahdaripour M, Eskandari S, Zamani M. In silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunol Res 2022;:1-20. [PMID: 36580228 DOI: 10.1007/s12026-022-09351-3] [Reference Citation Analysis]
8 Li T, Qian C, Gu Y, Zhang J, Li S, Xia N. Current progress in the development of prophylactic and therapeutic vaccines. Sci China Life Sci 2022;:1-32. [PMID: 36469218 DOI: 10.1007/s11427-022-2230-4] [Reference Citation Analysis]
9 Huang D, Taha MS, Nocera AL, Workman AD, Amiji MM, Bleier BS. Cold exposure impairs extracellular vesicle swarm–mediated nasal antiviral immunity. Journal of Allergy and Clinical Immunology 2022. [DOI: 10.1016/j.jaci.2022.09.037] [Reference Citation Analysis]
10 Noor R. mRNA Vaccines as an Efficient Approach for the Rapid and Robust Induction of Host Immunity Against SARS-CoV-2. SN Compr Clin Med 2022;4:88. [DOI: 10.1007/s42399-022-01168-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Xinyi Zhang, Hengqing Cui, Wenjun Zhang, Zhaoshen Li, Jie Gao. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022;22. [PMID: 36330160 DOI: 10.1016/j.bioactmat.2022.10.016] [Reference Citation Analysis]
12 Islamuddin M, Mustfa SA, Ullah SNMN, Omer U, Kato K, Parveen S. Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation 2022. [PMID: 35953688 DOI: 10.1007/s10753-022-01651-y] [Reference Citation Analysis]
13 Xie J, Li X, Yang S, Yan Z, Chen L, Yang Y, Li D, Zhang X, Feng R. DDX56 inhibits PRV replication through regulation of IFN-β signaling pathway by targeting cGAS. Front Microbiol 2022;13:932842. [DOI: 10.3389/fmicb.2022.932842] [Reference Citation Analysis]
14 Eralp Y. Application of mRNA Technology in Cancer Therapeutics. Vaccines (Basel) 2022;10:1262. [PMID: 36016150 DOI: 10.3390/vaccines10081262] [Reference Citation Analysis]
15 Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022;13:896958. [DOI: 10.3389/fimmu.2022.896958] [Reference Citation Analysis]
16 Osama Mohammed Hasan. Messenger RNA Based Vaccines and Their immunological effect on diseases. AJPS 2022;22:28-34. [DOI: 10.32947/ajps.v22i2.836] [Reference Citation Analysis]
17 Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Front Pharmacol 2022;13:915565. [DOI: 10.3389/fphar.2022.915565] [Reference Citation Analysis]
18 Takenaka Y, Tanaka R, Kitabatake K, Kuramochi K, Aoki S, Tsukimoto M. Profiling Differential Effects of 5 Selective Serotonin Reuptake Inhibitors on TLRs-Dependent and -Independent IL-6 Production in Immune Cells Identifies Fluoxetine as Preferred Anti-Inflammatory Drug Candidate. Front Pharmacol 2022;13:874375. [DOI: 10.3389/fphar.2022.874375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Rashid R, Westlake T, Zhang L, Zhang J, Cheung LS, Caushi JX, Pardoll DM, Cox AL, Ji H, Smith KN, Blankson JN. SARS-CoV-2 vaccination diversifies the CD4+ spike-reactive T cell repertoire in patients with prior SARS-CoV-2 infection. eBioMedicine 2022;80:104048. [DOI: 10.1016/j.ebiom.2022.104048] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 26.0] [Reference Citation Analysis]
21 Igual-Rouilleault AC, Soriano I, Elizalde A, Quan PL, Fernandez-Montero A, Sobrido C, Pina L. Axillary lymph node imaging in mRNA, vector-based, and mix-and-match COVID-19 vaccine recipients: ultrasound features. Eur Radiol 2022. [PMID: 35554651 DOI: 10.1007/s00330-022-08846-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Guo R, Lu SY, Ma JX, Wang QL, Zhang L, Tang LY, Shen Y, Shen CL, Wang JJ, Lu LM, Wang ZG, Zhang HX. RIG-I acts as a tumor suppressor in melanoma via regulating the activation of the MKK/p38MAPK signaling pathway. Hum Cell 2022. [PMID: 35416622 DOI: 10.1007/s13577-022-00698-1] [Reference Citation Analysis]
23 Lu Y, Huang WA, He ZB, Li S, Liu J. Network Pharmacology-Based Strategy for Exploring the Pharmacological Mechanism of Honeysuckle (Lonicer japonica Thunb.) against Newcastle Disease. Evidence-Based Complementary and Alternative Medicine 2022;2022:1-8. [DOI: 10.1155/2022/9265094] [Reference Citation Analysis]
24 Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022;183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Al Tbeishat H. Novel In Silico mRNA vaccine design exploiting proteins of M. tuberculosis that modulates host immune responses by inducing epigenetic modifications. Sci Rep 2022;12:4645. [PMID: 35301360 DOI: 10.1038/s41598-022-08506-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Chen Y, Zhong W, Xie Z, Li B, Li H, Gao K, Ning Z. Suppressor of cytokine signaling 1 (SOCS1) inhibits antiviral responses to facilitate Senecavirus A infection by regulating the NF-κB signaling pathway. Virus Res 2022;:198748. [PMID: 35304133 DOI: 10.1016/j.virusres.2022.198748] [Reference Citation Analysis]
27 Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Reviews in Medical Virology. [DOI: 10.1002/rmv.2343] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Xu S, Wang Q, Wang F, Li X, Wang B, Zhou Y, Zou P, Tang L, Yu D, Li W. Improved immune function of Chinese soft-shelled turtles (Pelodiscus sinensis) through oral probiotics via the TLR signaling pathway. Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.738126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Barazzone GC, Teixeira AF, Azevedo BOP, Damiano DK, Oliveira MP, Nascimento ALTO, Lopes APY. Revisiting the Development of Vaccines Against Pathogenic Leptospira: Innovative Approaches, Present Challenges, and Future Perspectives. Front Immunol 2021;12:760291. [PMID: 35046936 DOI: 10.3389/fimmu.2021.760291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Zhao B, Wang W, Zhao Y, Qiao H, Gao Z, Chuai X. Regulation of Antiviral Immune Response by N 6-Methyladenosine of mRNA. Front Microbiol 2021;12:789605. [PMID: 34975810 DOI: 10.3389/fmicb.2021.789605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Gill K, Minall L, Rodriguez Nassif A. pDNA and mRNA vaccines. Practical Aspects of Vaccine Development 2022. [DOI: 10.1016/b978-0-12-814357-5.00007-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D'Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022;12:2613-33. [PMID: 35538189 DOI: 10.1007/s13346-022-01138-1] [Reference Citation Analysis]
33 Wang AYL. Modified mRNA-Based Vaccines Against Coronavirus Disease 2019. Cell Transplant 2022;31:9636897221090259. [PMID: 35438579 DOI: 10.1177/09636897221090259] [Reference Citation Analysis]
34 Nitika, Wei J, Hui AM. The Development of mRNA Vaccines for Infectious Diseases: Recent Updates. Infect Drug Resist 2021;14:5271-85. [PMID: 34916811 DOI: 10.2147/IDR.S341694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ishaqat A, Herrmann A. Polymers Strive for Accuracy: From Sequence-Defined Polymers to mRNA Vaccines against COVID-19 and Polymers in Nucleic Acid Therapeutics. J Am Chem Soc 2021;143:20529-45. [PMID: 34841867 DOI: 10.1021/jacs.1c08484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Laidlaw BJ, Ellebedy AH. The germinal centre B cell response to SARS-CoV-2. Nat Rev Immunol 2021. [PMID: 34873279 DOI: 10.1038/s41577-021-00657-1] [Cited by in Crossref: 50] [Cited by in F6Publishing: 57] [Article Influence: 25.0] [Reference Citation Analysis]
37 Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, Nakamura T. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exp Ther Med 2022;23:20. [PMID: 34815772 DOI: 10.3892/etm.2021.10942] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
38 Madushani KP, Shanaka KASN, Yang H, Lim C, Jeong T, Tharuka MDN, Lee J. Molecular characterization, expression profile, and antiviral activity of redlip mullet (Liza haematocheila) viperin. Comp Biochem Physiol B Biochem Mol Biol 2022;258:110699. [PMID: 34801710 DOI: 10.1016/j.cbpb.2021.110699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Huang R, Zhao Z, Jiang X, Li W, Zhang L, Wang B, Tie H. Liposomal chrysin attenuates hepatic ischaemia-reperfusion injury: possible mechanism via inhibiting NLRP3 inflammasome. J Pharm Pharmacol 2021:rgab153. [PMID: 34791354 DOI: 10.1093/jpp/rgab153] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Rocamonde B, Futsch N, Orii N, Allatif O, Penalva de Oliveira AC, Mahieux R, Casseb J, Dutartre H. Immunoprofiling of fresh HAM/TSP blood samples shows altered innate cell responsiveness. PLoS Negl Trop Dis 2021;15:e0009940. [PMID: 34767551 DOI: 10.1371/journal.pntd.0009940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Xie J, Zhang X, Chen L, Bi Y, Idris A, Xu S, Li X, Zhang Y, Feng R. Pseudorabies Virus US3 Protein Inhibits IFN-β Production by Interacting With IRF3 to Block Its Activation. Front Microbiol 2021;12:761282. [PMID: 34745071 DOI: 10.3389/fmicb.2021.761282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Yang J, Zhu J, Chen Y, Du Y, Tan Y, Wu L, Sun J, Zhai M, Wei L, Li N, Huang K, Hou Q, Tong Z, Bechthold A, Sun Z, Zuo C. Intratumoral Delivered Novel Circular mRNA Encoding Cytokines for Immune Modulation and Cancer Therapy.. [DOI: 10.1101/2021.11.01.466725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Walker FC, Sridhar PR, Baldridge MT. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol 2021;42:1009-23. [PMID: 34629295 DOI: 10.1016/j.it.2021.09.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
44 Yu X, Gao S, Xu J, Zhao Y, Lu Y, Deng N, Lin H, Zhang Y, Lu D. The flagellin of Vibrio parahaemolyticus induces the inflammatory response of Tetraodon nigroviridis through TLR5M. Fish Shellfish Immunol 2021;120:102-10. [PMID: 34737057 DOI: 10.1016/j.fsi.2021.10.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Zangi L, K. Kaundal R, Kaur K. Gene Therapy for Heart Disease: Modified mRNA Perspectives. Cardiomyopathy - Disease of the Heart Muscle 2021. [DOI: 10.5772/intechopen.97184] [Reference Citation Analysis]
46 Xu Y, Ye M, Zhang Y, Sun S, Luo J, Jiang S, Zhang J, Liu X, Shao Q, Cao Q, Zheng W, Meurens F, Chen N, Zhu J. Screening of Porcine Innate Immune Adaptor Signaling Revealed Several Anti-PRRSV Signaling Pathways. Vaccines (Basel) 2021;9:1176. [PMID: 34696285 DOI: 10.3390/vaccines9101176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Liu X, Ao D, Jiang S, Xia N, Xu Y, Shao Q, Luo J, Wang H, Zheng W, Chen N, Meurens F, Zhu J. African Swine Fever Virus A528R Inhibits TLR8 Mediated NF-κB Activity by Targeting p65 Activation and Nuclear Translocation. Viruses 2021;13:2046. [PMID: 34696476 DOI: 10.3390/v13102046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
48 Ibba ML, Ciccone G, Esposito CL, Catuogno S, Giangrande PH. Advances in mRNA non-viral delivery approaches. Adv Drug Deliv Rev 2021;177:113930. [PMID: 34403751 DOI: 10.1016/j.addr.2021.113930] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
49 Leonardelli L, Lofano G, Selvaggio G, Parolo S, Giampiccolo S, Tomasoni D, Domenici E, Priami C, Song H, Medini D, Marchetti L, Siena E. Literature Mining and Mechanistic Graphical Modelling to Improve mRNA Vaccine Platforms. Front Immunol 2021;12:738388. [PMID: 34557200 DOI: 10.3389/fimmu.2021.738388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Xu Y, Zhang Y, Sun S, Luo J, Jiang S, Zhang J, Liu X, Shao Q, Cao Q, Zheng W, Chen N, Meurens F, Zhu J. The Innate Immune DNA Sensing cGAS-STING Signaling Pathway Mediates Anti-PRRSV Function. Viruses 2021;13:1829. [PMID: 34578409 DOI: 10.3390/v13091829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
51 Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021;131:143780. [PMID: 33393506 DOI: 10.1172/JCI143780] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
52 Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021;6:104. [PMID: 34400651 DOI: 10.1038/s41541-021-00369-6] [Cited by in Crossref: 96] [Cited by in F6Publishing: 104] [Article Influence: 48.0] [Reference Citation Analysis]
53 Osterloh A. Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines (Basel) 2021;9:896. [PMID: 34452021 DOI: 10.3390/vaccines9080896] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Kehrer T, García-Sastre A, Miorin L. Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. J Interferon Cytokine Res 2021;41:205-19. [PMID: 34161170 DOI: 10.1089/jir.2021.0060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021;105:5341-55. [PMID: 34180006 DOI: 10.1007/s00253-021-11406-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
56 Márquez-Rodas I, Longo F, Rodriguez-Ruiz ME, Calles A, Ponce S, Jove M, Rubio-Viqueira B, Perez-Gracia JL, Gómez-Rueda A, López-Tarruella S, Ponz-Sarvise M, Álvarez R, Soria-Rivas A, de Miguel E, Ramos-Medina R, Castañon E, Gajate P, Sempere-Ortega C, Jiménez-Aguilar E, Aznar MA, Calvo A, Lopez-Casas PP, Martín-Algarra S, Martín M, Tersago D, Quintero M, Melero I. Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci Transl Med 2020;12:eabb0391. [PMID: 33055241 DOI: 10.1126/scitranslmed.abb0391] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
57 Awogbindin IO, Ben-Azu B, Olusola BA, Akinluyi ET, Adeniyi PA, Di Paolo T, Tremblay MÈ. Microglial Implications in SARS-CoV-2 Infection and COVID-19: Lessons From Viral RNA Neurotropism and Possible Relevance to Parkinson's Disease. Front Cell Neurosci 2021;15:670298. [PMID: 34211370 DOI: 10.3389/fncel.2021.670298] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
58 Li S, Shao Q, Zhu Y, Ji X, Luo J, Xu Y, Liu X, Zheng W, Chen N, Meurens F, Zhu J. Porcine RIG-I and MDA5 Signaling CARD Domains Exert Similar Antiviral Function Against Different Viruses. Front Microbiol 2021;12:677634. [PMID: 34177861 DOI: 10.3389/fmicb.2021.677634] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Mustafa DAM, Saida L, Latifi D, Wismans LV, de Koning W, Zeneyedpour L, Luider TM, van den Hoogen B, van Eijck CHJ. Rintatolimod Induces Antiviral Activities in Human Pancreatic Cancer Cells: Opening for an Anti-COVID-19 Opportunity in Cancer Patients? Cancers (Basel) 2021;13:2896. [PMID: 34207861 DOI: 10.3390/cancers13122896] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
60 Ao D, Liu X, Xia P, Wang H, Jiang S, Zheng W, Chen N, Meurens F, Zhu J. Identification of imidazoquinoline derivative (IQD) interacting sites of porcine TLR8 and the underlying species specificity. Mol Immunol 2021;136:45-54. [PMID: 34082258 DOI: 10.1016/j.molimm.2021.05.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Li S, Yang J, Zhu Y, Wang H, Ji X, Luo J, Shao Q, Xu Y, Liu X, Zheng W, Meurens F, Chen N, Zhu J. Analysis of Porcine RIG-I Like Receptors Revealed the Positive Regulation of RIG-I and MDA5 by LGP2. Front Immunol 2021;12:609543. [PMID: 34093517 DOI: 10.3389/fimmu.2021.609543] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
62 Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics 2021;13:644. [PMID: 34062771 DOI: 10.3390/pharmaceutics13050644] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
63 Chen Z, Cao Y, Huang J, Tan Y, Wei J, Xiao J, Zou J, Feng H. NLK suppresses MAVS-mediated signaling in black carp antiviral innate immunity. Dev Comp Immunol 2021;122:104105. [PMID: 33872658 DOI: 10.1016/j.dci.2021.104105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Цыганков А, Янченко В, Лятос И. Human Defense Mechanisms Against Viruses Causing Acute Respiratory Infections. Клиническая инфектология и паразитология 2021. [DOI: 10.34883/pi.2021.10.1.027] [Reference Citation Analysis]
65 Grippo JF, Folitar I, Passe S, Jiang Q, Rodriguez I, Fettner SH, Calleja E. Safety, tolerability, pharmacokinetics, and pharmacodynamics of a TLR7 agonist prodrug RO6870868 in healthy volunteers. Clin Transl Sci 2021;14:1524-34. [PMID: 33742764 DOI: 10.1111/cts.13016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Rocamonde B, Futsch N, Orii N, Allatif O, Penalva de Oliveira AC, Mahieux R, Caseb J, Dutartre H. Immunoprofiling of HTLV-1-infected individuals shows altered innate cell responsiveness in HAM/TSP patients.. [DOI: 10.1101/2021.04.07.438775] [Reference Citation Analysis]
67 Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021;12:638446. [PMID: 33936053 DOI: 10.3389/fimmu.2021.638446] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH. Novel approaches for vaccine development. Cell 2021;184:1589-603. [PMID: 33740454 DOI: 10.1016/j.cell.2021.02.030] [Cited by in Crossref: 64] [Cited by in F6Publishing: 44] [Article Influence: 32.0] [Reference Citation Analysis]
69 Luisetto M, Farhan Ahmad K, Khaled E, Gamal Abdul H, Mashori G, Nili B, Fiazza C, Yesvi R, Latishev Yu O. COVID-19 immunologic and toxicological implication: Innate immune sensor and immune escape. Arch Pharm Pharma Sci 2021;5:001-017. [DOI: 10.29328/journal.apps.1001025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Borah P, Deb PK, Al-Shar'i NA, Dahabiyeh LA, Venugopala KN, Singh V, Shinu P, Hussain S, Deka S, Chandrasekaran B, Jaradat DMM. Perspectives on RNA Vaccine Candidates for COVID-19. Front Mol Biosci 2021;8:635245. [PMID: 33869282 DOI: 10.3389/fmolb.2021.635245] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 11.5] [Reference Citation Analysis]
71 Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer 2021;20:52. [PMID: 33722265 DOI: 10.1186/s12943-021-01339-1] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 21.0] [Reference Citation Analysis]
72 Nobile B, Durand M, Olié E, Guillaume S, Molès JP, Haffen E, Courtet P. The Anti-inflammatory Effect of the Tricyclic Antidepressant Clomipramine and Its High Penetration in the Brain Might Be Useful to Prevent the Psychiatric Consequences of SARS-CoV-2 Infection. Front Pharmacol 2021;12:615695. [PMID: 33767623 DOI: 10.3389/fphar.2021.615695] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
73 Irfan M, Qazi SR, Shakeel M, Khan SA, Azam Z, Shahzad M, Khan IA. WITHDRAWN: Analysis of host genetic variations associated with response to anti-HCV therapies in global populations. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100884] [Reference Citation Analysis]
74 Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes Simplex Virus and Pattern Recognition Receptors: An Arms Race. Front Immunol 2020;11:613799. [PMID: 33584700 DOI: 10.3389/fimmu.2020.613799] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
75 Knezevic I, Liu MA, Peden K, Zhou T, Kang HN. Development of mRNA Vaccines: Scientific and Regulatory Issues. Vaccines (Basel) 2021;9:81. [PMID: 33498787 DOI: 10.3390/vaccines9020081] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
76 Khan MI, Nur SM, Adhami V, Mukhtar H. Epigenetic regulation of RNA sensors: Sentinels of immune response. Semin Cancer Biol 2021:S1044-579X(21)00009-2. [PMID: 33484869 DOI: 10.1016/j.semcancer.2020.12.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
77 Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial Delivery Systems for mRNA Vaccines. Vaccines (Basel) 2021;9:65. [PMID: 33478109 DOI: 10.3390/vaccines9010065] [Cited by in Crossref: 155] [Cited by in F6Publishing: 168] [Article Influence: 77.5] [Reference Citation Analysis]
78 Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022;440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
79 Zhao J, Sun L, Zhao Y, Feng D, Cheng J, Zhang G. Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation. J Virol 2020:JVI. [PMID: 33361429 DOI: 10.1128/JVI.02103-20] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
80 Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020;8:619221. [PMID: 33392206 DOI: 10.3389/fcell.2020.619221] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
81 Shahnazaryan D, Khalil R, Wynne C, Jefferies CA, Ní Gabhann-Dromgoole J, Murphy CC. Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci Rep 2020;10:22216. [PMID: 33335135 DOI: 10.1038/s41598-020-77725-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
82 Pourseif MM, Parvizpour S, Jafari B, Dehghani J, Naghili B, Omidi Y. A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. Bioimpacts 2021;11:65-84. [PMID: 33469510 DOI: 10.34172/bi.2021.11] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
83 Archer N, Egan SA, Coffey TJ, Emes RD, Addis MF, Ward PN, Blanchard AM, Leigh JA. A Paradox in Bacterial Pathogenesis: Activation of the Local Macrophage Inflammasome Is Required for Virulence of Streptococcus uberis. Pathogens 2020;9:E997. [PMID: 33260788 DOI: 10.3390/pathogens9120997] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
84 Ekanayaka P, Lee SY, Herath TUB, Kim JH, Kim TH, Lee H, Chathuranga K, Chathuranga WAG, Park JH, Lee JS. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathog 2020;16:e1009057. [PMID: 33232374 DOI: 10.1371/journal.ppat.1009057] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
85 Chen M, Hu S, Li Y, Jiang TT, Jin H, Feng L. Targeting nuclear acid-mediated immunity in cancer immune checkpoint inhibitor therapies. Signal Transduct Target Ther 2020;5:270. [PMID: 33214545 DOI: 10.1038/s41392-020-00347-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
86 D'haese S, Lacroix C, Garcia F, Plana M, Ruta S, Vanham G, Verrier B, Aerts JL. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J Control Release 2021;330:1016-33. [PMID: 33181204 DOI: 10.1016/j.jconrel.2020.11.009] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
87 Zhou X, Jiang X, Qu M, Aninwene GE 2nd, Jucaud V, Moon JJ, Gu Z, Sun W, Khademhosseini A. Engineering Antiviral Vaccines. ACS Nano 2020;14:12370-89. [PMID: 33001626 DOI: 10.1021/acsnano.0c06109] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
88 Tregoning JS, Brown ES, Cheeseman HM, Flight KE, Higham SL, Lemm NM, Pierce BF, Stirling DC, Wang Z, Pollock KM. Vaccines for COVID-19. Clin Exp Immunol 2020;202:162-92. [PMID: 32935331 DOI: 10.1111/cei.13517] [Cited by in Crossref: 112] [Cited by in F6Publishing: 120] [Article Influence: 37.3] [Reference Citation Analysis]
89 Kieffer ME, Patel AM, Hollingsworth SA, Seganish WM. Small molecule agonists of toll-like receptors 7 and 8: a patent review 2014 - 2020. Expert Opin Ther Pat 2020;30:825-45. [PMID: 33052748 DOI: 10.1080/13543776.2020.1825687] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
90 de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ, Oliveira SC. Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 2020;22:515-24. [PMID: 32961274 DOI: 10.1016/j.micinf.2020.09.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
91 Bo Z, Miao Y, Xi R, Zhong Q, Bao C, Chen H, Sun L, Qian Y, Jung YS, Dai J. PRV UL13 inhibits cGAS-STING-mediated IFN-β production by phosphorylating IRF3. Vet Res 2020;51:118. [PMID: 32933581 DOI: 10.1186/s13567-020-00843-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
92 Zhu T, Fernandez-Sesma A. Innate Immune DNA Sensing of Flaviviruses. Viruses 2020;12:E979. [PMID: 32899347 DOI: 10.3390/v12090979] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
93 Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020;256:117956. [PMID: 32535078 DOI: 10.1016/j.lfs.2020.117956] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 19.0] [Reference Citation Analysis]
94 Kageyama Y, Aida K, Kawauchi K, Morimoto M, Ebisui T, Akiyama T, Nakamura T. Qing Fei Pai Du Tang, a Chinese multi-herbal medicine formulated against COVID-19, elevates the plasma levels of IL-1β, IL-18, TNF-α, and IL-8.. [DOI: 10.1101/2020.07.13.20146175] [Reference Citation Analysis]
95 Zhu X, Fang H, Gladysz K, Barbour JA, Wong JWH. Overexpression of transposable elements is associated with immune overdrive and poor clinical outcome in colorectal cancer patients.. [DOI: 10.1101/2020.07.14.20129031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
96 Stunnenberg M, van Pul L, Sprokholt JK, van Dort KA, Gringhuis SI, Geijtenbeek TBH, Kootstra NA. MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4+ T Cell Infection in HIV-1-Infected Individuals. Viruses 2020;12:E764. [PMID: 32708557 DOI: 10.3390/v12070764] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
97 Ahammad I, Lira SS. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int J Biol Macromol 2020;162:820-37. [PMID: 32599237 DOI: 10.1016/j.ijbiomac.2020.06.213] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
98 Kim HJ, Kwak HW, Kang KW, Bang YJ, Lee YS, Park HJ, Kim JY, Park HJ, Hwang KA, Lee SM, Nam JH. MERS-CoV Spike Protein Vaccine and Inactivated Influenza Vaccine Formulated with Single Strand RNA Adjuvant Induce T-Cell Activation through Intranasal Immunization in Mice. Pharmaceutics 2020;12:E441. [PMID: 32397649 DOI: 10.3390/pharmaceutics12050441] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
99 Lee SB, Park YH, Chungu K, Woo SJ, Han ST, Choi HJ, Rengaraj D, Han JY. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands. Front Immunol 2020;11:678. [PMID: 32425931 DOI: 10.3389/fimmu.2020.00678] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
100 Heimes A, Brodhagen J, Weikard R, Becker D, Meyerholz MM, Petzl W, Zerbe H, Schuberth HJ, Hoedemaker M, Schmicke M, Engelmann S, Kühn C. Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J Dairy Sci 2020;103:6364-73. [PMID: 32307160 DOI: 10.3168/jds.2019-17612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 Zhang XY, Liang HS, Hu JJ, Wan YT, Zhao J, Liang GT, Luo YH, Liang HX, Guo XQ, Li C, Liu WF, Liu KX. Ribonuclease attenuates acute intestinal injury induced by intestinal ischemia reperfusion in mice. Int Immunopharmacol 2020;83:106430. [PMID: 32279043 DOI: 10.1016/j.intimp.2020.106430] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
102 Swieboda D, Johnson EL, Beaver J, Haddad L, Enninga EAL, Hathcock M, Cordes S, Jean V, Lane I, Skountzou I, Chakraborty R. Baby's First Macrophage: Temporal Regulation of Hofbauer Cell Phenotype Influences Ligand-Mediated Innate Immune Responses across Gestation. J Immunol 2020;204:2380-91. [PMID: 32213562 DOI: 10.4049/jimmunol.1901185] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
103 Ao D, Li S, Jiang S, Luo J, Chen N, Meurens F, Zhu J. Inter-relation analysis of signaling adaptors of porcine innate immune pathways. Mol Immunol 2020;121:20-7. [PMID: 32142955 DOI: 10.1016/j.molimm.2020.02.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Shanaka KASN, Tharuka MDN, Sellaththurai S, Yang H, Priyathilaka TT, Lee J. Characterization and expression analysis of rockfish (Sebastes schlegelii) myeloid differentiation factor-88 (SsMyD88) and evaluation of its ability to induce inflammatory cytokines through NF-ĸB. Fish Shellfish Immunol 2020;99:59-72. [PMID: 32006686 DOI: 10.1016/j.fsi.2020.01.060] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
105 Stunnenberg M, Sprokholt JK, van Hamme JL, Kaptein TM, Zijlstra-Willems EM, Gringhuis SI, Geijtenbeek TBH. Synthetic Abortive HIV-1 RNAs Induce Potent Antiviral Immunity. Front Immunol 2020;11:8. [PMID: 32038656 DOI: 10.3389/fimmu.2020.00008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
106 Naik R, Peden K. Regulatory Considerations on the Development of mRNA Vaccines. Curr Top Microbiol Immunol 2022;440:187-205. [PMID: 32638114 DOI: 10.1007/82_2020_220] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
107 Nair P, Sapre SU. Significance of RNA Sensors in Activating Immune System in Emerging Viral Diseases. Dynamics of Immune Activation in Viral Diseases 2020. [DOI: 10.1007/978-981-15-1045-8_15] [Reference Citation Analysis]
108 Lee HC, Chathuranga K, Lee JS. Intracellular sensing of viral genomes and viral evasion. Exp Mol Med 2019;51:1-13. [PMID: 31827068 DOI: 10.1038/s12276-019-0299-y] [Cited by in Crossref: 166] [Cited by in F6Publishing: 201] [Article Influence: 41.5] [Reference Citation Analysis]
109 Arnaud AP, Rome V, Richard M, Formal M, David-Le Gall S, Boudry G. Post-natal co-development of the microbiota and gut barrier function follows different paths in the small and large intestine in piglets. FASEB J 2020;34:1430-46. [PMID: 31914707 DOI: 10.1096/fj.201902514R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
110 Jiang S, Ao D, Ni J, Chen N, Meurens F, Zhu J. The signaling relations between three adaptors of porcine C-type lectin receptor pathway. Dev Comp Immunol 2020;104:103555. [PMID: 31751629 DOI: 10.1016/j.dci.2019.103555] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
111 Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. European Journal of Medicinal Chemistry 2019;179:744-52. [DOI: 10.1016/j.ejmech.2019.06.084] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
112 Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J 2019;33:13412-22. [PMID: 31545910 DOI: 10.1096/fj.201901575R] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 16.0] [Reference Citation Analysis]
113 Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines (Basel) 2019;7:E122. [PMID: 31547081 DOI: 10.3390/vaccines7040122] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]
114 Eoh J, Gu L. Biomaterials as vectors for the delivery of CRISPR-Cas9. Biomater Sci 2019;7:1240-61. [PMID: 30734775 DOI: 10.1039/c8bm01310a] [Cited by in Crossref: 53] [Cited by in F6Publishing: 60] [Article Influence: 13.3] [Reference Citation Analysis]
115 Li SZ, Shu QP, Song Y, Zhang HH, Liu Y, Jin BX, Liuyu TZ, Li C, Huang XC, Du RL, Song W, Zhong B, Zhang XD. Phosphorylation of MAVS/VISA by Nemo-like kinase (NLK) for degradation regulates the antiviral innate immune response. Nat Commun 2019;10:3233. [PMID: 31324787 DOI: 10.1038/s41467-019-11258-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
116 Souza PPC, Lerner UH. Finding a Toll on the Route: The Fate of Osteoclast Progenitors After Toll-Like Receptor Activation. Front Immunol 2019;10:1663. [PMID: 31379855 DOI: 10.3389/fimmu.2019.01663] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
117 Shanaka KASN, Tharuka MDN, Priyathilaka TT, Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. Fish Shellfish Immunol 2019;92:655-66. [PMID: 31252045 DOI: 10.1016/j.fsi.2019.06.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
118 Ao D, Xia P, Jiang S, Chen N, Meurens F, Zhu J. Comparative transcriptome analysis of TLR8 signaling cells revealed the porcine TLR8 specific differentially expressed genes. Dev Comp Immunol 2019;98:129-36. [PMID: 31077691 DOI: 10.1016/j.dci.2019.05.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
119 Liu MA. A Comparison of Plasmid DNA and mRNA as Vaccine Technologies. Vaccines (Basel) 2019;7:E37. [PMID: 31022829 DOI: 10.3390/vaccines7020037] [Cited by in Crossref: 167] [Cited by in F6Publishing: 184] [Article Influence: 41.8] [Reference Citation Analysis]
120 Saitoh S, Miyake K. Nucleic Acid Innate Immune Receptors. Advances in Nucleic Acid Therapeutics 2019. [DOI: 10.1039/9781788015714-00292] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
121 Maruggi G, Zhang C, Li J, Ulmer JB, Yu D. mRNA as a Transformative Technology for Vaccine Development to Control Infectious Diseases. Mol Ther 2019;27:757-72. [PMID: 30803823 DOI: 10.1016/j.ymthe.2019.01.020] [Cited by in Crossref: 194] [Cited by in F6Publishing: 210] [Article Influence: 48.5] [Reference Citation Analysis]
122 Arsenović-ranin N. New vaccines on the horizon. Arhiv za farmaciju 2019;69:385-405. [DOI: 10.5937/arhfarm1906385a] [Reference Citation Analysis]
123 Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, Storm PB, Pardi N, Weissman D, Waanders AJ, Grupp SA, Karikó K, Resnick AC, Barrett DM. Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum Gene Ther 2019;30:168-78. [PMID: 30024272 DOI: 10.1089/hum.2018.145] [Cited by in Crossref: 44] [Cited by in F6Publishing: 50] [Article Influence: 8.8] [Reference Citation Analysis]
124 Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol 2018;9:1963. [PMID: 30283434 DOI: 10.3389/fimmu.2018.01963] [Cited by in Crossref: 336] [Cited by in F6Publishing: 339] [Article Influence: 67.2] [Reference Citation Analysis]
125 Dvorak CM, Puvanendiran S, Murtaugh MP. Porcine circovirus 2 infection induces IFNβ expression through increased expression of genes involved in RIG-I and IRF7 signaling pathways. Virus Research 2018;253:38-47. [DOI: 10.1016/j.virusres.2018.05.027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
126 Imaizumi T, Arai A, Kawaguchi S, Hayakari R, Matsumiya T, Seya K, Yoshida H, Tanaka H. Retinoic acid-inducible gene-I, melanoma differentiation-associated gene 5 and C-X-C motif chemokine ligand 10 are induced by a Toll-like receptor 3 agonist in human brain microvascular endothelial cells. Clin Exp Neuroimmunol 2018;9:189-97. [DOI: 10.1111/cen3.12463] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
127 Said EA, Tremblay N, Al-Balushi MS, Al-Jabri AA, Lamarre D. Viruses Seen by Our Cells: The Role of Viral RNA Sensors. J Immunol Res 2018;2018:9480497. [PMID: 29854853 DOI: 10.1155/2018/9480497] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
128 Stunnenberg M, Geijtenbeek TBH, Gringhuis SI. DDX3 in HIV-1 infection and sensing: A paradox. Cytokine Growth Factor Rev 2018;40:32-9. [PMID: 29580812 DOI: 10.1016/j.cytogfr.2018.03.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
129 Zhang X, Cao C, Qu Z, Zhang W, Liu Y, Qi H, Hao C, Zhang W, Gao M, Wang J, Ma B. Pathogenicity of duck hepatitis A virus type 3 and innate immune responses of the ducklings to virulent DHAV-3. Molecular Immunology 2018;95:30-8. [DOI: 10.1016/j.molimm.2018.01.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
130 Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-79. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Cited by in Crossref: 1620] [Cited by in F6Publishing: 1705] [Article Influence: 324.0] [Reference Citation Analysis]
131 Fermin G, Tennant P. Host–Virus Interactions. Viruses 2018. [DOI: 10.1016/b978-0-12-811257-1.00010-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
132 de Bruyn M, Vermeire S. NOD2 and bacterial recognition as therapeutic targets for Crohn’s disease. Expert Opinion on Therapeutic Targets 2017;21:1123-39. [DOI: 10.1080/14728222.2017.1397627] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]