BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen Z, Gao W, Pu L, Zhang L, Han G, Zuo X, Zhang Y, Li X, Shen H, Wu J, Wang X. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1. Hepatology 2018;68:994-1009. [PMID: 29572888 DOI: 10.1002/hep.29890] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, Wu J, Wang X. circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci 2019;110:568-81. [PMID: 30520539 DOI: 10.1111/cas.13901] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
2 Di Tullio F, Schwarz M, Zorgati H, Mzoughi S, Guccione E. The duality of PRDM proteins: epigenetic and structural perspectives. FEBS J 2021. [PMID: 33774927 DOI: 10.1111/febs.15844] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhou C, Liu C, Liu W, Chen W, Yin Y, Li CW, Hsu JL, Sun J, Zhou Q, Li H, Hu B, Fu P, Atyah M, Ma Q, Xu Y, Dong Q, Hung MC, Ren N. SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics 2020;10:4627-43. [PMID: 32292519 DOI: 10.7150/thno.42869] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
4 Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
5 Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020;21:E2648. [PMID: 32290321 DOI: 10.3390/ijms21072648] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
6 Shen B, Zhu W, Liu X, Jiang J. NAP1L1 Functions as a Novel Prognostic Biomarker Associated With Macrophages and Promotes Tumor Progression by Influencing the Wnt/β-Catenin Pathway in Hepatocellular Carcinoma. Front Genet 2022;13:876253. [DOI: 10.3389/fgene.2022.876253] [Reference Citation Analysis]
7 Liu Y, Li X, Zhang Y, Tang Y, Fang W, Liu X, Liu Z. NAP1L1 targeting suppresses the proliferation of nasopharyngeal carcinoma. Biomed Pharmacother 2021;143:112096. [PMID: 34563951 DOI: 10.1016/j.biopha.2021.112096] [Reference Citation Analysis]
8 Sun J, Li J, Wu Z, Liang Y, Duan R, Zheng M, Wang J, Kong D. SLPI suppresses hepatocellular carcinoma progression via endoplasmic reticulum stress induced apoptosis. Int J Biol Sci 2022;18:140-53. [PMID: 34975323 DOI: 10.7150/ijbs.65676] [Reference Citation Analysis]
9 Chen Z, Xie Y, Luo H, Song Y, Que T, Hu R, Huang H, Luo K, Li C, Qin C, Zheng C, Fang W, Liu L, Long H, Luo Q. NAP1L1 promotes proliferation and chemoresistance in glioma by inducing CCND1/CDK4/CDK6 expression through its interaction with HDGF and activation of c-Jun. Aging (Albany NY) 2021;13:26180-200. [PMID: 34959221 DOI: 10.18632/aging.203805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Almajali B, Johan MF, Al-wajeeh AS, Wan Taib WR, Ismail I, Alhawamdeh M, Al-tawarah NM, Ibrahim WN, Al-rawashde FA, Al-jamal HAN. Gene Expression Profiling and Protein Analysis Reveal Suppression of the C-Myc Oncogene and Inhibition JAK/STAT and PI3K/AKT/mTOR Signaling by Thymoquinone in Acute Myeloid Leukemia Cells. Pharmaceuticals 2022;15:307. [DOI: 10.3390/ph15030307] [Reference Citation Analysis]
11 Lin Z, Qu S, Peng W, Yang P, Zhang R, Zhang P, Guo D, Du J, Wu W, Tao K, Wang J. Up-Regulated CCDC34 Contributes to the Proliferation and Metastasis of Hepatocellular Carcinoma. Onco Targets Ther 2020;13:51-60. [PMID: 32021254 DOI: 10.2147/OTT.S237399] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Scott K, O'Rourke R, Gillen A, Appel B. Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response. Development 2020;147:dev191023. [PMID: 32680935 DOI: 10.1242/dev.191023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
13 Liu S, Zhang Y, Cui S, Song D, Li B, Chen Q, Yao G, Gong B. NAP1L1 interacts with hepatoma-derived growth factor to recruit c-Jun inducing breast cancer growth. Cancer Cell Int 2021;21:605. [PMID: 34774047 DOI: 10.1186/s12935-021-02301-3] [Reference Citation Analysis]
14 Xie J, Zhang W, Liang X, Shuai C, Zhou Y, Pan H, Yang Y, Han W. RPL32 Promotes Lung Cancer Progression by Facilitating p53 Degradation. Mol Ther Nucleic Acids 2020;21:75-85. [PMID: 32516735 DOI: 10.1016/j.omtn.2020.05.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Li Y, Sena Lopes J, Fuster PC, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics 2022. [PMID: 35466858 DOI: 10.1080/15592294.2022.2067938] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ding W, Fan Y, Jia W, Pan X, Han G, Zhang Y, Chen Z, Lu Y, Wang J, Wu J, Wang X. FER Regulated by miR-206 Promotes Hepatocellular Carcinoma Progression via NF-κB Signaling. Front Oncol 2021;11:683878. [PMID: 34295819 DOI: 10.3389/fonc.2021.683878] [Reference Citation Analysis]
17 Li Q, Pan X, Zhu D, Deng Z, Jiang R, Wang X. Circular RNA MAT2B Promotes Glycolysis and Malignancy of Hepatocellular Carcinoma Through the miR-338-3p/PKM2 Axis Under Hypoxic Stress. Hepatology 2019;70:1298-316. [PMID: 31004447 DOI: 10.1002/hep.30671] [Cited by in Crossref: 121] [Cited by in F6Publishing: 113] [Article Influence: 40.3] [Reference Citation Analysis]
18 Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X. HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 2021;6:76. [PMID: 33619246 DOI: 10.1038/s41392-020-00453-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Lett. 2018;437:56-66. [PMID: 30165194 DOI: 10.1016/j.canlet.2018.08.024] [Cited by in Crossref: 67] [Cited by in F6Publishing: 79] [Article Influence: 16.8] [Reference Citation Analysis]
20 Zhang YW, Chen Q, Li B, Li HY, Zhao XK, Xiao YY, Liu S, Zuo S. NAP1L1 Functions as a Tumor Promoter via Recruiting Hepatoma-Derived Growth Factor/c-Jun Signal in Hepatocellular Carcinoma. Front Cell Dev Biol 2021;9:659680. [PMID: 34368121 DOI: 10.3389/fcell.2021.659680] [Reference Citation Analysis]
21 Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, Wu Z, You W, Qin J, Dai X, Shen H, Wang X, Wu J. Hypomethylation-mediated activation of cancer/testis antigen KK-LC-1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling. Cell Prolif. 2019;52:e12581. [PMID: 30895661 DOI: 10.1111/cpr.12581] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
22 Duan X, Li W, Hu P, Jiang B, Yang J, Zhou L, Mao X, Tian B. MicroRNA-183-5p contributes to malignant progression through targeting PDCD4 in human hepatocellular carcinoma. Biosci Rep 2020;40:BSR20201761. [PMID: 33078826 DOI: 10.1042/BSR20201761] [Reference Citation Analysis]
23 Heidegger I, Fotakis G, Offermann A, Goveia J, Daum S, Salcher S, Noureen A, Timmer-Bosscha H, Schäfer G, Walenkamp A, Perner S, Beatovic A, Moisse M, Plattner C, Krogsdam A, Haybaeck J, Sopper S, Thaler S, Keller MA, Klocker H, Trajanoski Z, Wolf D, Pircher A. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer 2022;21:132. [PMID: 35717322 DOI: 10.1186/s12943-022-01597-7] [Reference Citation Analysis]