BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Src kinase inhibition reduces inflammatory and cytoskeletal changes in ΔF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology 2018;67:972-88. [PMID: 28836688 DOI: 10.1002/hep.29400] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen B, Jefferson DM, Cho WK. Impaired Regulatory Volume Decrease and Characterization of Underlying Volume-Activated Currents in Cystic Fibrosis Human Cholangiocyte Cell Line. J Membrane Biol. [DOI: 10.1007/s00232-022-00216-2] [Reference Citation Analysis]
2 Oliveira AG, Fiorotto R. Novel approaches to liver disease diagnosis and modeling. Transl Gastroenterol Hepatol 2021;6:19. [PMID: 33824923 DOI: 10.21037/tgh-20-109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Lee SJ, Lee HA. Trends in the development of human stem cell-based non-animal drug testing models. Korean J Physiol Pharmacol 2020;24:441-52. [PMID: 33093266 DOI: 10.4196/kjpp.2020.24.6.441] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
4 D'amore C, Borgo C, Bosello-travain V, Vilardell J, Salizzato V, Pinna LA, Venerando A, Salvi M. Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020;1866:165611. [DOI: 10.1016/j.bbadis.2019.165611] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Shen T, Li Y, Zhu S, Yu J, Zhang B, Chen X, Zhang Z, Ma Y, Niu Y, Shang Z. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. J Exp Clin Cancer Res 2020;39:36. [PMID: 32066485 DOI: 10.1186/s13046-020-1542-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
6 Zarei K, Meyerholz DK, Stoltz DA. Early intrahepatic duct defects in a cystic fibrosis porcine model. Physiol Rep 2021;9:e14978. [PMID: 34288572 DOI: 10.14814/phy2.14978] [Reference Citation Analysis]
7 Feranchak AP. Cystic fibrosis transmembrane conductance regulator: Actin(g) as a master regulator of cholangiocyte function. Hepatology 2018;67:833-6. [PMID: 29023826 DOI: 10.1002/hep.29583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
8 Torres S, Abdullah Z, Brol MJ, Hellerbrand C, Fernandez M, Fiorotto R, Klein S, Königshofer P, Liedtke C, Lotersztajn S, Nevzorova YA, Schierwagen R, Reiberger T, Uschner FE, Tacke F, Weiskirchen R, Trebicka J. Recent Advances in Practical Methods for Liver Cell Biology: A Short Overview. Int J Mol Sci 2020;21:E2027. [PMID: 32188134 DOI: 10.3390/ijms21062027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Salas-Silva S, Simoni-Nieves A, Chávez-Rodríguez L, Gutiérrez-Ruiz MC, Bucio L, Quiroz LEG. Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021;26:100530. [PMID: 34509686 DOI: 10.1016/j.aohep.2021.100530] [Reference Citation Analysis]
10 Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018;35:381-93. [PMID: 30236451 DOI: 10.1016/j.ebiom.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
11 Staufer K. Current Treatment Options for Cystic Fibrosis-Related Liver Disease. Int J Mol Sci 2020;21:E8586. [PMID: 33202578 DOI: 10.3390/ijms21228586] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019;105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
13 Roos FJM, Bijvelds MJC, Verstegen MMA, Roest HP, Metselaar HJ, Polak WG, Jonge HR, IJzermans JNM, van der Laan LJW. Impact of hypoxia and AMPK on CFTR-mediated bicarbonate secretion in human cholangiocyte organoids. Am J Physiol Gastrointest Liver Physiol 2021;320:G741-52. [PMID: 33655768 DOI: 10.1152/ajpgi.00389.2020] [Reference Citation Analysis]
14 Dana J, Debray D, Beaufrère A, Hillaire S, Fabre M, Reinhold C, Baumert T, Berteloot L, Vilgrain V. Cystic fibrosis-related liver disease: clinical presentations, diagnostic and monitoring approaches in the era of CFTR modulator therapies. J Hepatol 2021:S0168-8278(21)02115-2. [PMID: 34678405 DOI: 10.1016/j.jhep.2021.09.042] [Reference Citation Analysis]
15 Fiorotto R, Strazzabosco M. Pathophysiology of Cystic Fibrosis Liver Disease: A Channelopathy Leading to Alterations in Innate Immunity and in Microbiota. Cell Mol Gastroenterol Hepatol 2019;8:197-207. [PMID: 31075352 DOI: 10.1016/j.jcmgh.2019.04.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
16 Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Liver diseases in the dish: iPSC and organoids as a new approach to modeling liver diseases. Biochim Biophys Acta Mol Basis Dis 2019;1865:920-8. [PMID: 30264693 DOI: 10.1016/j.bbadis.2018.08.038] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
17 Sakiani S, Kleiner DE, Heller T, Koh C. Hepatic Manifestations of Cystic Fibrosis. Clin Liver Dis 2019;23:263-77. [PMID: 30947876 DOI: 10.1016/j.cld.2018.12.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
18 Fiorotto R, Amenduni M, Mariotti V, Cadamuro M, Fabris L, Spirli C, Strazzabosco M. Animal models for cystic fibrosis liver disease (CFLD). Biochim Biophys Acta Mol Basis Dis 2019;1865:965-9. [PMID: 30071276 DOI: 10.1016/j.bbadis.2018.07.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
19 Rodrigues MA, Gomes DA, Nathanson MH. Calcium Signaling in Cholangiocytes: Methods, Mechanisms, and Effects. Int J Mol Sci. 2018;19. [PMID: 30563259 DOI: 10.3390/ijms19123913] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
20 Li Q, Dutta A, Kresge C, Bugde A, Feranchak AP. Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl- channels. Hepatology 2018;68:187-99. [PMID: 29360145 DOI: 10.1002/hep.29804] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
21 Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021;27:59-76. [PMID: 33267737 DOI: 10.1089/ten.TEC.2020.0283] [Reference Citation Analysis]
22 Kamal N, Surana P, Koh C. Liver disease in patients with cystic fibrosis. Curr Opin Gastroenterol 2018;34:146-51. [PMID: 29438119 DOI: 10.1097/MOG.0000000000000432] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
23 Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, Banales JM, Strazzabosco M. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019;16:497-511. [PMID: 31165788 DOI: 10.1038/s41575-019-0156-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
24 Huang Y, Miyamoto D, Li PL, Sakai Y, Hara T, Adachi T, Soyama A, Hidaka M, Kanetaka K, Gu WL, Eguchi S. Chemical conversion of aged hepatocytes into bipotent liver progenitor cells. Hepatol Res 2021;51:323-35. [PMID: 33378128 DOI: 10.1111/hepr.13609] [Reference Citation Analysis]
25 Ogawa M, Jiang JX, Xia S, Yang D, Ding A, Laselva O, Hernandez M, Cui C, Higuchi Y, Suemizu H, Dorrell C, Grompe M, Bear CE, Ogawa S. Generation of functional ciliated cholangiocytes from human pluripotent stem cells. Nat Commun 2021;12:6504. [PMID: 34764255 DOI: 10.1038/s41467-021-26764-0] [Reference Citation Analysis]
26 Amato F, Rae C, Prete MG, Braconi C. Cholangiocarcinoma Disease Modelling Through Patients Derived Organoids. Cells 2020;9:E832. [PMID: 32235647 DOI: 10.3390/cells9040832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Bijvelds MJC, Roos FJM, Meijsen KF, Roest HP, Verstegen MMA, Janssens HM, van der Laan LJW, de Jonge HR. Rescue of chloride and bicarbonate transport by elexacaftor-ivacaftor-tezacaftor in organoid-derived CF intestinal and cholangiocyte monolayers. J Cyst Fibros 2021:S1569-1993(21)02165-2. [PMID: 34922851 DOI: 10.1016/j.jcf.2021.12.006] [Reference Citation Analysis]