BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Santiago A, Aguado-Sierra J, Zavala-Aké M, Doste-Beltran R, Gómez S, Arís R, Cajas JC, Casoni E, Vázquez M. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int J Numer Method Biomed Eng 2018;34:e3140. [PMID: 30117302 DOI: 10.1002/cnm.3140] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Calzone L, Noël V, Barillot E, Kroemer G, Stoll G. Modeling signaling pathways in biology with MaBoSS: From one single cell to a dynamic population of heterogeneous interacting cells. Comput Struct Biotechnol J 2022;20:5661-71. [PMID: 36284705 DOI: 10.1016/j.csbj.2022.10.003] [Reference Citation Analysis]
2 Santiago A, Butakoff C, Eguzkitza B, Gray RA, May-newman K, Pathmanathan P, Vu V, Vázquez M. Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation. PLoS Comput Biol 2022;18:e1010141. [DOI: 10.1371/journal.pcbi.1010141] [Reference Citation Analysis]
3 Margara F, Psaras Y, Wang ZJ, Schmid M, Doste R, Garfinkel A, Repetti GG, Seidman J, Seidman C, Rodriguez B, Toepfer CN, Bueno-orovio A. Human iPSC-CMs and in-silico technologies define mechanisms and accelerate targeted pharmacogenetics in hypertrophic cardiomyopathy.. [DOI: 10.1101/2022.06.08.495324] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Webber M, Falconer D, AlFarih M, Joy G, Chan F, Davie C, Hamill Howes L, Wong A, Rapala A, Bhuva A, Davies RH, Morton C, Aguado-Sierra J, Vazquez M, Tao X, Krausz G, Tanackovic S, Guger C, Xue H, Kellman P, Pierce I, Schott J, Hardy R, Chaturvedi N, Rudy Y, Moon JC, Lambiase PD, Orini M, Hughes AD, Captur G. Study protocol: MyoFit46-the cardiac sub-study of the MRC National Survey of Health and Development. BMC Cardiovasc Disord 2022;22:140. [PMID: 35365075 DOI: 10.1186/s12872-022-02582-0] [Reference Citation Analysis]
5 Joyce T, Buoso S, Stoeck CT, Kozerke S. Rapid inference of personalised left-ventricular meshes by deformation-based differentiable mesh voxelization. Medical Image Analysis 2022. [DOI: 10.1016/j.media.2022.102445] [Reference Citation Analysis]
6 Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Ionic remodelling following myocardial infarction explains phenotypic variability in ECG and arrhythmic substrate but not in ejection fraction.. [DOI: 10.1101/2022.02.15.480392] [Reference Citation Analysis]
7 Regazzoni F, Salvador M, Africa P, Fedele M, Dedè L, Quarteroni A. A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of Computational Physics 2022. [DOI: 10.1016/j.jcp.2022.111083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
8 González-martín P, Sacco F, Butakoff C, Doste R, Bederián C, Gutierrez Espinosa de los Monteros LK, Houzeaux G, Iaizzo PA, Iles TL, Vázquez M, Aguado-sierra J. Ventricular anatomical complexity and gender differences impact predictions from computational models.. [DOI: 10.1101/2022.01.28.22269815] [Reference Citation Analysis]
9 Brenneisen J, Daub A, Gerach T, Kovacheva E, Huetter L, Frohnapfel B, Dössel O, Loewe A. Sequential Coupling Shows Minor Effects of Fluid Dynamics on Myocardial Deformation in a Realistic Whole-Heart Model. Front Cardiovasc Med 2021;8:768548. [PMID: 35004885 DOI: 10.3389/fcvm.2021.768548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Oks D, Vázquez M, Houzeaux G, Butakoff C, Samaniego C. Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements.. [DOI: 10.1101/2022.01.06.475272] [Reference Citation Analysis]
11 Zingaro A, Fumagalli I, Dede L, Fedele M, Africa PC, Corno AF, Quarteroni A. . DCDS-S 2022;15:2391. [DOI: 10.3934/dcdss.2022052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mythri TG, Hossain SJ, Bhattacharya B. Towards Finite Element Modelling of Electrical Activity in Cardiac Tissue Based on Greenstein–Winslow Ventricular Myocyte Model. Lecture Notes in Mechanical Engineering 2022. [DOI: 10.1007/978-981-16-6490-8_30] [Reference Citation Analysis]
13 Ming D, Guillas S. Linked Gaussian Process Emulation for Systems of Computer Models Using Matérn Kernels and Adaptive Design. SIAM/ASA J Uncertainty Quantification 2021;9:1615-42. [DOI: 10.1137/20m1323771] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Santiago A, Butakoff C, Eguzkitza B, Gray RA, May-newman K, Pathmanathan P, Vu V, Vázquez M. Design and execution of a Verification, Validation, and Uncertainty Quantification plan for a numerical model of left ventricular flow after LVAD implantation.. [DOI: 10.1101/2021.11.11.468169] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Wang ZJ, Santiago A, Zhou X, Wang L, Margara F, Levrero-Florencio F, Das A, Kelly C, Dall'Armellina E, Vazquez M, Rodriguez B. Human biventricular electromechanical simulations on the progression of electrocardiographic and mechanical abnormalities in post-myocardial infarction. Europace 2021;23:i143-52. [PMID: 33751088 DOI: 10.1093/europace/euaa405] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
16 Kovacheva E, Gerach T, Schuler S, Ochs M, Dössel O, Loewe A. Causes of altered ventricular mechanics in hypertrophic cardiomyopathy: an in-silico study. Biomed Eng Online 2021;20:69. [PMID: 34294108 DOI: 10.1186/s12938-021-00900-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Khodaei S, Sadeghi R, Blanke P, Leipsic J, Emadi A, Keshavarz-motamed Z. Towards a non-invasive computational diagnostic framework for personalized cardiology of transcatheter aortic valve replacement in interactions with complex valvular, ventricular and vascular disease. International Journal of Mechanical Sciences 2021;202-203:106506. [DOI: 10.1016/j.ijmecsci.2021.106506] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Gerach T, Schuler S, Fröhlich J, Lindner L, Kovacheva E, Moss R, Wülfers EM, Seemann G, Wieners C, Loewe A. Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled Multi-Physics Approach. Mathematics 2021;9:1247. [DOI: 10.3390/math9111247] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
19 Khodaei S, Henstock A, Sadeghi R, Sellers S, Blanke P, Leipsic J, Emadi A, Keshavarz-Motamed Z. Personalized intervention cardiology with transcatheter aortic valve replacement made possible with a non-invasive monitoring and diagnostic framework. Sci Rep 2021;11:10888. [PMID: 34035325 DOI: 10.1038/s41598-021-85500-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Aguado-sierra J, Butakoff C, Brigham R, Baron AK, Houzeaux G, Guerra JM, Carreras F, Filgueiras-rama D, Iaizzo PA, Iles TL, Vazquez M. HPC framework for in-silico trials on 3D virtual human cardiac population to assess drug-induced arrhythmic risk.. [DOI: 10.1101/2021.04.21.21255870] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Bucelli M, Salvador M, Dede’ L, Quarteroni A. Multipatch Isogeometric Analysis for electrophysiology: Simulation in a human heart. Computer Methods in Applied Mechanics and Engineering 2021;376:113666. [DOI: 10.1016/j.cma.2021.113666] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
22 Fedele M, Quarteroni A. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function. Int J Numer Method Biomed Eng 2021;37:e3435. [PMID: 33415829 DOI: 10.1002/cnm.3435] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
23 Bragard JR, Camara O, Echebarria B, Gerardo Giorda L, Pueyo E, Saiz J, Sebastián R, Soudah E, Vázquez M. Modelización computacional cardiaca. Revista Española de Cardiología 2021;74:65-71. [DOI: 10.1016/j.recesp.2020.05.040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
24 Wang L, Wang ZJ, Doste R, Santiago A, Zhou X, Quintanas A, Vazquez M, Rodriguez B. Effects of Fibre Orientation on Electrocardiographic and Mechanical Functions in a Computational Human Biventricular Model. Functional Imaging and Modeling of the Heart 2021. [DOI: 10.1007/978-3-030-78710-3_34] [Reference Citation Analysis]
25 Piersanti R, Africa PC, Fedele M, Vergara C, Dedè L, Corno AF, Quarteroni A. Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Computer Methods in Applied Mechanics and Engineering 2021;373:113468. [DOI: 10.1016/j.cma.2020.113468] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 24.0] [Reference Citation Analysis]
26 Józsa TI, Padmos RM, Samuels N, El-Bouri WK, Hoekstra AG, Payne SJ. A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke. Interface Focus 2021;11:20190127. [PMID: 33343874 DOI: 10.1098/rsfs.2019.0127] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
27 Kong F, Shadden SC. Automating Model Generation for Image-Based Cardiac Flow Simulation. J Biomech Eng 2020;142:111011. [PMID: 32766785 DOI: 10.1115/1.4048032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
28 Jiang Y, Chen R, Cai X. A highly parallel implicit domain decomposition method for the simulation of the left ventricle on unstructured meshes. Comput Mech 2020;66:1461-75. [DOI: 10.1007/s00466-020-01912-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Bragard JR, Camara O, Echebarria B, Gerardo Giorda L, Pueyo E, Saiz J, Sebastián R, Soudah E, Vázquez M. Cardiac computational modelling. Rev Esp Cardiol (Engl Ed) 2021;74:65-71. [PMID: 32807708 DOI: 10.1016/j.rec.2020.05.024] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Margara F, Wang ZJ, Levrero-Florencio F, Santiago A, Vázquez M, Bueno-Orovio A, Rodriguez B. In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. Prog Biophys Mol Biol 2021;159:58-74. [PMID: 32710902 DOI: 10.1016/j.pbiomolbio.2020.06.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
31 Houzeaux G, Garcia-gasulla M, Cajas JC, Borrell R, Santiago A, Moulinec C, Vázquez M. Parallel Multiphysics Coupling: Algorithmic and Computational Performances. International Journal of Computational Fluid Dynamics 2020;34:486-507. [DOI: 10.1080/10618562.2020.1783440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Santiago A, Zavala-aké M, Borrell R, Houzeaux G, Vázquez M. HPC compact quasi-Newton algorithm for interface problems. Journal of Fluids and Structures 2020;96:103009. [DOI: 10.1016/j.jfluidstructs.2020.103009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
33 Lluch È, Camara O, Doste R, Bijnens B, De Craene M, Sermesant M, Wang VY, Nash MP, Morales HG. Calibration of a fully coupled electromechanical meshless computational model of the heart with experimental data. Computer Methods in Applied Mechanics and Engineering 2020;364:112869. [DOI: 10.1016/j.cma.2020.112869] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Nikishova A, Comi GE, Hoekstra AG. Sensitivity analysis based dimension reduction of multiscale models. Mathematics and Computers in Simulation 2020;170:205-220. [DOI: 10.1016/j.matcom.2019.10.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Levrero-Florencio F, Margara F, Zacur E, Bueno-Orovio A, Wang ZJ, Santiago A, Aguado-Sierra J, Houzeaux G, Grau V, Kay D, Vázquez M, Ruiz-Baier R, Rodriguez B. Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: Effect of mechanical parameters on physiologically relevant biomarkers. Comput Methods Appl Mech Eng 2020;361:112762. [PMID: 32565583 DOI: 10.1016/j.cma.2019.112762] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
36 Kariya T, Washio T, Okada JI, Nakagawa M, Watanabe M, Kadooka Y, Sano S, Nagai R, Sugiura S, Hisada T. Personalized Perioperative Multi-scale, Multi-physics Heart Simulation of Double Outlet Right Ventricle. Ann Biomed Eng 2020;48:1740-50. [PMID: 32152800 DOI: 10.1007/s10439-020-02488-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
37 Pons R, Guala A, Rodríguez-Palomares JF, Cajas JC, Dux-Santoy L, Teixidó-Tura G, Molins JJ, Vázquez M, Evangelista A, Martorell J. Fluid-structure interaction simulations outperform computational fluid dynamics in the description of thoracic aorta haemodynamics and in the differentiation of progressive dilation in Marfan syndrome patients. R Soc Open Sci 2020;7:191752. [PMID: 32257331 DOI: 10.1098/rsos.191752] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
38 Strocchi M, Gsell MAF, Augustin CM, Razeghi O, Roney CH, Prassl AJ, Vigmond EJ, Behar JM, Gould JS, Rinaldi CA, Bishop MJ, Plank G, Niederer SA. Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium. J Biomech 2020;101:109645. [PMID: 32014305 DOI: 10.1016/j.jbiomech.2020.109645] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 16.5] [Reference Citation Analysis]
39 Kojic M, Milosevic M, Simic V, Milicevic B, Geroski V, Nizzero S, Ziemys A, Filipovic N, Ferrari M. Smeared Multiscale Finite Element Models for Mass Transport and Electrophysiology Coupled to Muscle Mechanics. Front Bioeng Biotechnol 2019;7:381. [PMID: 31921800 DOI: 10.3389/fbioe.2019.00381] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
40 Azzolin L, Dedè L, Gerbi A, Quarteroni A; 1 Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 1, D-76131, Karlsruhe, Germany, 2 Modeling and Scientific Computing (MOX), Mathematics Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy, 3 Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Avenue Piccard, CH-1015, Lausanne, Switzerland, This contribution is part of the Special Issue: Contemporary PDEs between theory and modeling—Dedicated to Sandro Salsa, on the occasion of his 70th birthday, Guest Editor: Gianmaria Verzini, Link: https://www.aimspress.com/newsinfo/1429.html. . Mathematics in Engineering 2020;2:614-38. [DOI: 10.3934/mine.2020028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Leong CN, Dokos S, Andriyana A, Liew YM, Chan BT, Abdul Aziz YF, Chee K, Sridhar GS, Lim E. The role of end‐diastolic myocardial fibre stretch on infarct extension. Int J Numer Meth Biomed Engng 2020;36. [DOI: 10.1002/cnm.3291] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 This A, Boilevin-Kayl L, Fernández MA, Gerbeau JF. Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases. Int J Numer Method Biomed Eng 2020;36:e3223. [PMID: 31206245 DOI: 10.1002/cnm.3223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 [DOI: 10.1109/ipdps.2019.00066] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
44 Pfaller MR, Hörmann JM, Weigl M, Nagler A, Chabiniok R, Bertoglio C, Wall WA. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech Model Mechanobiol 2019;18:503-29. [DOI: 10.1007/s10237-018-1098-4] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 10.5] [Reference Citation Analysis]
45 Gil D, Aris R, Borras A, Ramirez E, Sebastian R, Vazquez M. Influence of fiber connectivity in simulations of cardiac biomechanics. Int J CARS 2019;14:63-72. [DOI: 10.1007/s11548-018-1849-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]