BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Colella M, Nagaki A, Luisi R. Flow Technology for the Genesis and Use of (Highly) Reactive Organometallic Reagents. Chemistry 2020;26:19-32. [PMID: 31498924 DOI: 10.1002/chem.201903353] [Cited by in Crossref: 43] [Cited by in F6Publishing: 48] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Donnelly K, Baumann M. Continuous Flow Technology as an Enabler for Innovative Transformations Exploiting Carbenes, Nitrenes, and Benzynes. J Org Chem 2022. [PMID: 35700424 DOI: 10.1021/acs.joc.2c00963] [Reference Citation Analysis]
2 Iwasaki T, Ishiga W, Pal S, Nozaki K, Kambe N. Mechanistic Insight into Rh-Catalyzed C(sp 2 )–O Bond Cleavage Applied to Cross-Coupling Reaction of Benzofurans with Aryl Grignard Reagents. ACS Catal . [DOI: 10.1021/acscatal.2c01974] [Reference Citation Analysis]
3 Colella M, Musci P, Andresini M, Spennacchio M, Degennaro L, Luisi R. The synthetic versatility of fluoroiodomethane: recent applications as monofluoromethylation platform. Org Biomol Chem 2022;20:4669-80. [PMID: 35587647 DOI: 10.1039/d2ob00670g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022;26:1751-65. [DOI: 10.1021/acs.oprd.2c00074] [Reference Citation Analysis]
5 Musci P, Colella M, Andresini M, Aramini A, Degennaro L, Luisi R. Flow technology enabled preparation of C3-heterosubstituted 1-azabicyclo[1.1.0]butanes and azetidines: accessing unexplored chemical space in strained heterocyclic chemistry. Chem Commun (Camb) 2022;58:6356-9. [PMID: 35536561 DOI: 10.1039/d2cc01641a] [Reference Citation Analysis]
6 Scattolin T, Simoens A, Stevens CV, Nolan SP. Flow chemistry of main group and transition metal complexes. Trends in Chemistry 2022. [DOI: 10.1016/j.trechm.2022.04.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Sathiyalingam S, Roesner S. Synthesis of α‐ and β‐Carbolines by a Metalation/Negishi Cross‐Coupling/S N Ar Reaction Sequence. Adv Synth Catal 2022;364:1769-74. [DOI: 10.1002/adsc.202200127] [Reference Citation Analysis]
8 Kestemont J, Frost JR, Jacq J, Pasau P, Perl F, Brown J, Tissot M. Scale-Up and Optimization of a Continuous Flow Carboxylation of N -Boc-4,4-difluoropiperidine Using s -BuLi in THF. Org Process Res Dev 2022;26:635-9. [DOI: 10.1021/acs.oprd.1c00092] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Elorriaga D, Parra-cadenas B, Antiñolo A, Carrillo-hermosilla F, García-álvarez J. Combination of air/moisture/ambient temperature compatible organolithium chemistry with sustainable solvents: selective and efficient synthesis of guanidines and amidines. Green Chem . [DOI: 10.1039/d1gc03393j] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yamada T, Park K, Furugen C, Jiang J, Shimizu E, Ito N, Sajiki H. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. ChemSusChem 2021. [PMID: 34779573 DOI: 10.1002/cssc.202102138] [Reference Citation Analysis]
11 Wong JYF, Thomson CG, Vilela F, Barker G. Flash chemistry enables high productivity metalation-substitution of 5-alkyltetrazoles. Chem Sci 2021;12:13413-24. [PMID: 34777760 DOI: 10.1039/d1sc04176b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021;86:13943-54. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
13 Polterauer D, Williams JD, Hone CA, Oliver Kappe C. Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Letters 2021;82:153351. [DOI: 10.1016/j.tetlet.2021.153351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021;19:7737-53. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tamaki T, Nagaki A. Flash production of organophosphorus compounds in flow. Tetrahedron Letters 2021;81:153364. [DOI: 10.1016/j.tetlet.2021.153364] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Inoue K, Feng Y, Mori A, Okano K. "Snapshot" Trapping of Multiple Transient Azolyllithiums in Batch. Chemistry 2021;27:10267-73. [PMID: 33960030 DOI: 10.1002/chem.202101256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021;60:14296-301. [PMID: 33826212 DOI: 10.1002/anie.202103031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
18 Kuhwald C, Kirschning A. Matteson Reaction under Flow Conditions: Iterative Homologations of Terpenes. Org Lett 2021;23:4300-4. [PMID: 33983747 DOI: 10.1021/acs.orglett.1c01222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fuse S, Komuro K, Otake Y, Masui H, Nakamura H. Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry 2021;27:7525-32. [PMID: 33496974 DOI: 10.1002/chem.202100059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Alonso M, Garcia MC, Mckay C, Thorp LR, Webb M, Edwards LJ. Use of Lithium Diisopropylamide in Flow: Operability and Safety Challenges Encountered on a Multigram Scale. Org Process Res Dev 2021;25:988-1000. [DOI: 10.1021/acs.oprd.1c00015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Menges-flanagan G, Deitmann E, Gössl L, Hofmann C, Löb P. Scalable Continuous Synthesis of Organozinc Reagents and Their Immediate Subsequent Coupling Reactions. Org Process Res Dev 2021;25:427-33. [DOI: 10.1021/acs.oprd.0c00399] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Donnelly K, Baumann M. A continuous flow synthesis of [1.1.1]propellane and bicyclo[1.1.1]pentane derivatives. Chem Commun (Camb) 2021;57:2871-4. [PMID: 33616143 DOI: 10.1039/d0cc08124h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
23 Musci P, von Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C3 ) Functionalization of Highly Strained 1-Azabicyclo[1.1.0]butanes. Angew Chem Int Ed Engl 2021;60:6395-9. [PMID: 33325599 DOI: 10.1002/anie.202014881] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
24 von Keutz T, Williams JD, Kappe CO. Flash Chemistry Approach to Organometallic C -Glycosylation for the Synthesis of Remdesivir. Org Process Res Dev 2021;25:1015-21. [DOI: 10.1021/acs.oprd.1c00024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
25 Musci P, Keutz T, Belaj F, Degennaro L, Cantillo D, Kappe CO, Luisi R. Flow Technology for Telescoped Generation, Lithiation and Electrophilic (C 3 ) Functionalization of Highly Strained 1‐Azabicyclo[1.1.0]butanes. Angew Chem 2021;133:6465-9. [DOI: 10.1002/ange.202014881] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
26 Kwong A, Firth JD, Farmer TJ, O’brien P. Rapid “high” temperature batch and flow lithiation-trapping of N-Boc pyrrolidine. Tetrahedron 2021;81:131899. [DOI: 10.1016/j.tet.2020.131899] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021;60:731-5. [PMID: 33026681 DOI: 10.1002/anie.202012085] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
28 Wang S, Panayides J, Riley D, Tighe CJ, Hellgardt K, Hii KK(, Miller PW. Rapid formation of 2-lithio-1-(triphenylmethyl)imidazole and substitution reactions in flow. React Chem Eng 2021;6:2018-23. [DOI: 10.1039/d1re00343g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ye C, Xu L. Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. J Mater Chem A 2021;9:22218-47. [DOI: 10.1039/d1ta05605k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
30 Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. React Chem Eng 2021;6:756-86. [DOI: 10.1039/d0re00411a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
31 Wong JY, Barker G. Recent advances in benzylic and heterobenzylic lithiation. Tetrahedron 2020;76:131704. [DOI: 10.1016/j.tet.2020.131704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Fuse S. Cluster Preface: Integrated Synthesis Using Continuous-Flow Technologies. Synlett 2020;31:1878-9. [DOI: 10.1055/s-0040-1706605] [Reference Citation Analysis]
33 Liu L, Deng J, Guo Y. Synthesis of coumarin derivatives in a microfluidic flow system employing the Pechmann condensation: A case study. J Chin Chem Soc 2020;67:2208-15. [DOI: 10.1002/jccs.202000371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem 2021;133:742-6. [DOI: 10.1002/ange.202012085] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
35 Mortzfeld F, Polenk J, Guelat B, Venturoni F, Schenkel B, Filipponi P. Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Org Process Res Dev 2020;24:2004-16. [DOI: 10.1021/acs.oprd.0c00117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
36 von Keutz T, Cantillo D, Kappe CO. Organomagnesium Based Flash Chemistry: Continuous Flow Generation and Utilization of Halomethylmagnesium Intermediates. Org Lett 2020;22:7537-41. [PMID: 32914630 DOI: 10.1021/acs.orglett.0c02725] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
37 von Keutz T, Williams JD, Kappe CO. Continuous Flow C -Glycosylation via Metal–Halogen Exchange: Process Understanding and Improvements toward Efficient Manufacturing of Remdesivir. Org Process Res Dev 2020;24:2362-8. [DOI: 10.1021/acs.oprd.0c00370] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
38 Inoue K, Okano K. Trapping of Transient Organolithium Compounds. Asian J Org Chem 2020;9:1548-61. [DOI: 10.1002/ajoc.202000339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
39 Harenberg JH, Weidmann N, Knochel P. Preparation of Functionalized Aryl, Heteroaryl, and Benzylic Potassium Organometallics Using Potassium Diisopropylamide in Continuous Flow. Angew Chem Int Ed Engl 2020;59:12321-5. [PMID: 32216119 DOI: 10.1002/anie.202003392] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
40 Colella M, Degennaro L, Luisi R. Continuous Flow Synthesis of Heterocycles: A Recent Update on the Flow Synthesis of Indoles. Molecules 2020;25:E3242. [PMID: 32708643 DOI: 10.3390/molecules25143242] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
41 Ye J, Zhang J, Saga Y, Onozawa S, Kobayashi S, Sato K, Fukaya N, Han L. Ready Approach to Organophosphines from ArCl via Selective Cleavage of C–P Bonds by Sodium. Organometallics 2020;39:2682-94. [DOI: 10.1021/acs.organomet.0c00295] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
42 Harenberg JH, Weidmann N, Knochel P. Herstellung funktioneller Aryl‐, Heteroaryl‐ und benzylischer Organokalium‐Spezies mittels Kaliumdiisopropylamid im kontinuierlichen Durchfluss. Angew Chem 2020;132:12419-24. [DOI: 10.1002/ange.202003392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
43 Power M, Alcock E, Mcglacken GP. Organolithium Bases in Flow Chemistry: A Review. Org Process Res Dev 2020;24:1814-38. [DOI: 10.1021/acs.oprd.0c00090] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
44 Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem 2020;132:11016-20. [DOI: 10.1002/ange.202003831] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
45 Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Fluoro‐Substituted Methyllithium Chemistry: External Quenching Method Using Flow Microreactors. Angew Chem Int Ed 2020;59:10924-8. [DOI: 10.1002/anie.202003831] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
46 Musci P, Colella M, Sivo A, Romanazzi G, Luisi R, Degennaro L. Flow Microreactor Technology for Taming Highly Reactive Chloroiodomethyllithium Carbenoid: Direct and Chemoselective Synthesis of α-Chloroaldehydes. Org Lett 2020;22:3623-7. [PMID: 32276538 DOI: 10.1021/acs.orglett.0c01085] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
47 Ferlin F, Lanari D, Vaccaro L. Sustainable flow approaches to active pharmaceutical ingredients. Green Chem 2020;22:5937-55. [DOI: 10.1039/d0gc02404j] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
48 von Keutz T, Cantillo D, Kappe CO. Continuous Flow Synthesis of Terminal Epoxides from Ketones Using in Situ Generated Bromomethyl Lithium. Org Lett 2019;21:10094-8. [PMID: 31794232 DOI: 10.1021/acs.orglett.9b04072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]