1 |
Wu L, Armstrong Z, Schröder SP, de Boer C, Artola M, Aerts JM, Overkleeft HS, Davies GJ. An overview of activity-based probes for glycosidases. Current Opinion in Chemical Biology 2019;53:25-36. [DOI: 10.1016/j.cbpa.2019.05.030] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 9.7] [Reference Citation Analysis]
|
2 |
Steiger AK, Fansler SJ, Whidbey C, Miller CJ, Wright AT. Probe-enabled approaches for function-dependent cell sorting and characterization of microbiome subpopulations. Methods Enzymol 2020;638:89-107. [PMID: 32416923 DOI: 10.1016/bs.mie.2020.03.014] [Reference Citation Analysis]
|
3 |
Abe A, Kamiya M. A versatile toolbox for investigating biological processes based on quinone methide chemistry: From self-immolative linkers to self-immobilizing agents. Bioorg Med Chem 2021;44:116281. [PMID: 34216983 DOI: 10.1016/j.bmc.2021.116281] [Reference Citation Analysis]
|
4 |
Fan N, Li P, Zhou Y, Wu C, Wang X, Liu Z, Tang B. Demystifying Lysosomal α-l-Fucosidase in Liver Cancer-Bearing Mice by Specific Two-Photon Fluorescence Imaging. ACS Sens 2022;7:71-81. [PMID: 34968045 DOI: 10.1021/acssensors.1c01630] [Reference Citation Analysis]
|
5 |
Luijkx YMCA, Jongkees S, Strijbis K, Wennekes T. Development of a 1,2-difluorofucoside activity-based probe for profiling GH29 fucosidases. Org Biomol Chem 2021;19:2968-77. [PMID: 33729259 DOI: 10.1039/d1ob00054c] [Reference Citation Analysis]
|
6 |
Dubovetskyi A, Cherukuri KP, Ashani Y, Meshcheriakova A, Reuveny E, Ben-Nissan G, Sharon M, Fumagalli L, Tawfik DS. Quinone Methide-Based Organophosphate Hydrolases Inhibitors: Trans Proximity Labelers versus Cis Labeling Activity-Based Probes. Chembiochem 2021;22:894-903. [PMID: 33105515 DOI: 10.1002/cbic.202000611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|