BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bai Y, Liu CP, Song X, Zhuo L, Bu H, Tian W. Photo- and pH- Dual-Responsive β-Cyclodextrin-Based Supramolecular Prodrug Complex Self-Assemblies for Programmed Drug Delivery. Chem Asian J 2018;13:3903-11. [DOI: 10.1002/asia.201801366] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022;352:600-18. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Reference Citation Analysis]
2 Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022;190:114554. [PMID: 36181993 DOI: 10.1016/j.addr.2022.114554] [Reference Citation Analysis]
3 Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201288] [Reference Citation Analysis]
4 Jiang C, Xu G, Gao J. Stimuli-Responsive Macromolecular Self-Assembly. Sustainability 2022;14:11738. [DOI: 10.3390/su141811738] [Reference Citation Analysis]
5 Li C, Li Y, Li G, Wu S. Functional Nanoparticles for Enhanced Cancer Therapy. Pharmaceutics 2022;14:1682. [PMID: 36015307 DOI: 10.3390/pharmaceutics14081682] [Reference Citation Analysis]
6 Han L, Wang K, Ren Z, Yang X, Duan X, Krishnan S, Jaisankar A, Park J, Dashnyam K, Zhang W, Pedraz JL, Ramakrishna S, Kim H, Li C, Song L, Ramalingam M. One-pot synthesis and enzyme-responsiveness of amphiphilic doxorubicin prodrug nanomicelles for cancer therapeutics. RSC Adv 2022;12:27963-9. [DOI: 10.1039/d2ra04436f] [Reference Citation Analysis]
7 Liu C, Li M, Liu C, Qiu S, Bai Y, Fan L, Tian W. A supramolecular organometallic drug complex with H2O2 self-provision intensifying intracellular autocatalysis for chemodynamic therapy. J Mater Chem B 2022. [DOI: 10.1039/d2tb01834a] [Reference Citation Analysis]
8 Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Li Z, Zhao Y, Liu H, Ren M, Wang Z, Wang X, Liu H, Feng Y, Lin Q, Wang C, Wang J. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Materials & Design 2021;210:110104. [DOI: 10.1016/j.matdes.2021.110104] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
10 Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Progress in Polymer Science 2021;121:101432. [DOI: 10.1016/j.progpolymsci.2021.101432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Zhang X, Duan X, Hu Y, Tang Z, Miao C, Tao W, Wu J. One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. Nano Today 2021;37:101098. [DOI: 10.1016/j.nantod.2021.101098] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
12 Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 2021:j. [PMID: 33764711 DOI: 10.20892/j.issn.2095-3941.2020.0496] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
13 Sandhya S, Devika V, Rajeev N, Sreelekshmi PJ, Chandran A, Goutami GB, Aiswarya Lakshmi S. Multiple stimuli responsive cyclodextrin based smart materials for drug delivery: a review. E3S Web Conf 2021;309:01014. [DOI: 10.1051/e3sconf/202130901014] [Reference Citation Analysis]
14 Torres J, Dhas N, Longhi M, García MC. Overcoming Biological Barriers With Block Copolymers-Based Self-Assembled Nanocarriers. Recent Advances in Delivery of Anticancer Therapeutics. Front Pharmacol 2020;11:593197. [PMID: 33329001 DOI: 10.3389/fphar.2020.593197] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Rivero-Barbarroja G, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials (Basel) 2020;10:E2517. [PMID: 33333914 DOI: 10.3390/nano10122517] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
16 Yang Z, Liu Z, Yuan L. Recent Advances of Photoresponsive Supramolecular Switches. Asian J Org Chem 2021;10:74-90. [DOI: 10.1002/ajoc.202000501] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
17 Bai Y, Liu C, Chen D, Liu C, Zhuo L, Li H, Wang C, Bu H, Tian W. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydrate Polymers 2020;246:116654. [DOI: 10.1016/j.carbpol.2020.116654] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
18 Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohydr Polym 2021;251:116871. [PMID: 33142550 DOI: 10.1016/j.carbpol.2020.116871] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 16.3] [Reference Citation Analysis]
19 Zhang Y, Xu C, Yang X, Pu K. Photoactivatable Protherapeutic Nanomedicine for Cancer. Adv Mater 2020;32:e2002661. [PMID: 32667701 DOI: 10.1002/adma.202002661] [Cited by in Crossref: 113] [Cited by in F6Publishing: 119] [Article Influence: 37.7] [Reference Citation Analysis]
20 Xie A, Hanif S, Ouyang J, Tang Z, Kong N, Kim NY, Qi B, Patel D, Shi B, Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020;56:102821. [PMID: 32505922 DOI: 10.1016/j.ebiom.2020.102821] [Cited by in Crossref: 57] [Cited by in F6Publishing: 63] [Article Influence: 19.0] [Reference Citation Analysis]
21 Liu C, Li C, Pang C, Li M, Li H, Li P, Fan L, Liu H, Tian W. Supramolecular Drug–Drug Complex Vesicles Enable Sequential Drug Release for Enhanced Combination Therapy. ACS Appl Mater Interfaces 2020;12:27940-50. [DOI: 10.1021/acsami.0c04565] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zeng L, Liao Z, Li W, Yuan Q, Wu P, Gu Z, Liu Z, Liao G. Non-covalent glycosylated gold nanoparticles/peptides nanovaccine as potential cancer vaccines. Chinese Chemical Letters 2020;31:1162-4. [DOI: 10.1016/j.cclet.2019.10.015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 8.3] [Reference Citation Analysis]
23 Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Hu Y, Peng D, Liu Z, Liu Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020;230:119619. [DOI: 10.1016/j.biomaterials.2019.119619] [Cited by in Crossref: 207] [Cited by in F6Publishing: 220] [Article Influence: 69.0] [Reference Citation Analysis]
24 Song X, Deng X, Wang Q, Tian J, He F, Hu H, Tian W. Self-assembling morphology-tunable single-component supramolecular antibiotics for enhanced antibacterial manipulation. Polym Chem 2020;11:102-11. [DOI: 10.1039/c9py01440c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bai Y, An N, Chen D, Liu YZ, Liu CP, Yao H, Wang C, Song X, Tian W. Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 2020;231:115714. [PMID: 31888845 DOI: 10.1016/j.carbpol.2019.115714] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
26 Li X, He G, Jin H, Tao J, Li X, Zhai C, Luo Y, Liu X. Dual-Therapeutics-Loaded Mesoporous Silica Nanoparticles Applied for Breast Tumor Therapy. ACS Appl Mater Interfaces 2019;11:46497-503. [DOI: 10.1021/acsami.9b16270] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
27 Zhao W, Zhao Y, Wang Q, Liu T, Sun J, Zhang R. Remote Light‐Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019;15:1903060. [DOI: 10.1002/smll.201903060] [Cited by in Crossref: 95] [Cited by in F6Publishing: 103] [Article Influence: 23.8] [Reference Citation Analysis]
28 Bai Y, Liu CP, Chen D, Zhuo LH, Bu HT, Tian W. Morphology-tunable and pH-responsive supramolecular self-assemblies based on AB2-type host-guest-conjugated amphiphilic molecules for controlled drug delivery. Beilstein J Org Chem 2019;15:1925-32. [PMID: 31501659 DOI: 10.3762/bjoc.15.188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Cai Y, Liu F, Ma X, Yang X, Zhao H. Hydrophobic Interaction-Induced Coassembly of Homopolymers and Proteins. Langmuir 2019;35:10958-64. [DOI: 10.1021/acs.langmuir.9b01749] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
30 Duan X, Yang X, Li C, Song L. Highly Water-Soluble Methotrexate-Polyethyleneglycol-Rhodamine Prodrug Micelle for High Tumor Inhibition Activity. AAPS PharmSciTech 2019;20:245. [PMID: 31286294 DOI: 10.1208/s12249-019-1462-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
31 Seidi F, Couffon A, Prawatborisut M, Crespy D. Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. Macromol Chem Phys 2019;220:1900236. [DOI: 10.1002/macp.201900236] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
32 Yao H, Yang T, He J, Du G, Song X, Zhang Y, Tian W. Ultrasound and Redox-Triggered Morphology Transitions of Supramolecular Self-assemblies with pH Responsiveness for Triple-Controlled Release. Langmuir 2019;35:8045-51. [DOI: 10.1021/acs.langmuir.9b01153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Bai Y, Liu CP, Xie FY, Ma R, Zhuo LH, Li N, Tian W. Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB2-type macromonomer and their application in the drug delivery field. Carbohydr Polym 2019;213:411-8. [PMID: 30879686 DOI: 10.1016/j.carbpol.2019.03.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]