BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dong L, Closson AB, Jin C, Trase I, Chen Z, Zhang JXJ. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications. Adv Mater Technol 2019;4:1900177. [PMID: 33829079 DOI: 10.1002/admt.201900177] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Shi G, Zeng W, Xia Y, Xu J, Jia S, Li Q, Wang X, Xia H, Ye Y. A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball. Energy 2023. [DOI: 10.1016/j.energy.2023.126808] [Reference Citation Analysis]
2 Hu K, Wang M. Broadband Piezoelectric Energy Harvester Based on Coupling Resonance Frequency Tuning. Micromachines (Basel) 2022;14:105. [PMID: 36677166 DOI: 10.3390/mi14010105] [Reference Citation Analysis]
3 Qi Y, Kuang Y, Liu Y, Liu G, Zeng J, Zhao J, Wang L, Zhu M, Zhang C. Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor. Applied Energy 2022;327:120092. [DOI: 10.1016/j.apenergy.2022.120092] [Reference Citation Analysis]
4 Song H, Hwang G, Ryu J, Choi H. Stable output performance generated from a magneto-mechano-electric generator having self-resonance tunability with a movable proof mass. Nano Energy 2022;101:107607. [DOI: 10.1016/j.nanoen.2022.107607] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Yu D, Yang Y, Hu G, Zhou Y, Hong J. Energy harvesting from thermally induced vibrations of antenna panels. International Journal of Mechanical Sciences 2022;231:107565. [DOI: 10.1016/j.ijmecsci.2022.107565] [Reference Citation Analysis]
6 Zou Y, Sun M, Xu W, Zhao X, Du T, Sun P, Xu M. Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator. JMSE 2022;10:1348. [DOI: 10.3390/jmse10101348] [Reference Citation Analysis]
7 De Fazio R, Proto R, Del-valle-soto C, Velázquez R, Visconti P. New Wearable Technologies and Devices to Efficiently Scavenge Energy from the Human Body: State of the Art and Future Trends. Energies 2022;15:6639. [DOI: 10.3390/en15186639] [Reference Citation Analysis]
8 Liu L, Shi Q, Guo X, Zhang Z, Lee C. A facile frequency tuning strategy to realize vibration‐based hybridized piezoelectric‐triboelectric nanogenerators. EcoMat. [DOI: 10.1002/eom2.12279] [Reference Citation Analysis]
9 Kwon SH, Dong L. Flexible Sensors and Machine Learning for Heart Monitoring. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yang C, Liu G, Wang X, Liu B, Xiao L, Wan L, Yao H. Harvesting Wide Frequency Micromechanical Vibration Energy and Wind Energy with a Multi‐Mode Triboelectric Nanogenerator for Traffic Monitoring and Warning. Adv Materials Technologies. [DOI: 10.1002/admt.202200465] [Reference Citation Analysis]
11 Zhang L, Tang X, Qin Z, Chu F. Vibro-impact energy harvester for low frequency vibration enhanced by acoustic black hole. Appl Phys Lett 2022;121:013902. [DOI: 10.1063/5.0089382] [Reference Citation Analysis]
12 Yan Y, De Almeida GFF, Yang Z, Dong T. A resistorless MOSFET-only current reference for energy harvesting applications. 2022 International Conference on Electronics, Information, and Communication (ICEIC) 2022. [DOI: 10.1109/iceic54506.2022.9748354] [Reference Citation Analysis]
13 Dezhara A. Frequency response locking of electromagnetic vibration-based energy harvesters using a switch with tuned duty cycle. Energy Harvesting and Systems 2022;9:83-96. [DOI: 10.1515/ehs-2021-0057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Park J, Wu Z, Steiner PR, Zhu B, Zhang JXJ. Heart-on-Chip for Combined Cellular Dynamics Measurements and Computational Modeling Towards Clinical Applications. Ann Biomed Eng 2022. [PMID: 35039976 DOI: 10.1007/s10439-022-02902-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Mahmud MAP, Adhikary P, Zolfagharian A, Adams S, Kaynak A, Kouzani AZ. Advanced Design, Fabrication, and Applications of 3D-Printable Piezoelectric Nanogenerators. Electron Mater Lett . [DOI: 10.1007/s13391-021-00327-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Behera A. Energy Harvesting and Storing Materials. Advanced Materials 2022. [DOI: 10.1007/978-3-030-80359-9_15] [Reference Citation Analysis]
17 Wang Z, Du Y, Li T, Yan Z, Tan T. A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design. Applied Energy 2021;303:117577. [DOI: 10.1016/j.apenergy.2021.117577] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
18 Akhkozov L, Danilenko I, Podhurska V, Shylo A, Vasyliv B, Ostash O, Lyubchyk A. Zirconia-based materials in alternative energy devices - A strategy for improving material properties by optimizing the characteristics of initial powders. International Journal of Hydrogen Energy 2021. [DOI: 10.1016/j.ijhydene.2021.11.193] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Godinho A, Yang Z, Dong T, Gonçalves L, Mendes P, Wen Y, Li P, Jiang Z. A Dynamic Threshold Cancellation Technique for a High-Power Conversion Efficiency CMOS Rectifier. Sensors (Basel) 2021;21:6883. [PMID: 34696101 DOI: 10.3390/s21206883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Almeida G, Yang Z, Dong T, Mendes P, Wen Y, Li P. 0.13 μm Low-Power CMOS Current Starved VCO for Vibration Energy Harvesters. IEEE Trans Electron Devices 2021;68:2167-2172. [DOI: 10.1109/ted.2021.3064909] [Reference Citation Analysis]
21 Jiang J, Liu S, Feng L, Zhao D. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics. Micromachines (Basel) 2021;12:436. [PMID: 33919932 DOI: 10.3390/mi12040436] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
22 Jin C, Dong L, Xu Z, Closson A, Cabe A, Gruslova A, Jenney S, Escobedo D, Elliott J, Zhang M, Hao N, Chen Z, Feldman MD, Zhang JXJ. Skin‐like Elastomer Embedded Zinc Oxide Nanoarrays for Biomechanical Energy Harvesting. Adv Materials Inter 2021;8:2100094. [DOI: 10.1002/admi.202100094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Fakeih E, Almansouri AS, Kosel J, Younis MI, Salama KN. A Wideband Magnetic Frequency Up‐Converter Energy Harvester. Adv Eng Mater 2021;23:2001364. [DOI: 10.1002/adem.202001364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
24 Afroz AS, Romano D, Inglese F, Stefanini C. Towards Bio-Hybrid Energy Harvesting in the Real-World: Pushing the Boundaries of Technologies and Strategies Using Bio-Electrochemical and Bio-Mechanical Processes. Applied Sciences 2021;11:2220. [DOI: 10.3390/app11052220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Elsisy MM, Arafa MH, Saleh CA, Anis YH. Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting. Sensors (Basel) 2021;21:1095. [PMID: 33562599 DOI: 10.3390/s21041095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Hasan MN, Sahlan S, Osman K, Mohamed Ali MS. Energy Harvesters for Wearable Electronics and Biomedical Devices. Adv Materials Technologies 2021;6:2000771. [DOI: 10.1002/admt.202000771] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
27 Song HC, Kim SW, Kim HS, Lee DG, Kang CY, Nahm S. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning. Adv Mater 2020;32:e2002208. [PMID: 33006178 DOI: 10.1002/adma.202002208] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
28 Wei X, Zhao H, Yu J, Zhong Y, Liao Y, Shi S, Wang P. A Tower-Shaped Three-Dimensional Piezoelectric Energy Harvester for Low-Level and Low-Frequency Vibration. Int J of Precis Eng and Manuf -Green Tech 2021;8:1537-50. [DOI: 10.1007/s40684-020-00281-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zou Y, Raveendran V, Chen J. Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy 2020;77:105303. [DOI: 10.1016/j.nanoen.2020.105303] [Cited by in Crossref: 130] [Cited by in F6Publishing: 135] [Article Influence: 43.3] [Reference Citation Analysis]
30 Dong L, Jin C, Closson AB, Trase I, Richards HC, Chen Z, Zhang JX. Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy 2020;76:105076. [DOI: 10.1016/j.nanoen.2020.105076] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
31 Dong L, Closson AB, Jin C, Nie Y, Cabe A, Escobedo D, Huang S, Trase I, Xu Z, Chen Z, Feldman MD, Zhang JXJ. Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing. Adv Healthc Mater 2020;9:e2000053. [PMID: 32347010 DOI: 10.1002/adhm.202000053] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
32 Li X, Mu J, He J, Fan X, Zhang Q, Hou X, Geng W, Zhang W, Chou X. Bioinspired Helical Triboelectric Nanogenerators for Energy Conversion of Motion. Adv Mater Technol 2020;5:1900917. [DOI: 10.1002/admt.201900917] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
33 Costa CM, Cardoso VF, Brito-pereira R, Martins P, Correia DM, Correia V, Ribeiro C, Martins PM, Lanceros-méndez S. Electroactive poly(vinylidene fluoride)-based materials: recent progress, challenges, and opportunities. Fascinating Fluoropolymers and Their Applications 2020. [DOI: 10.1016/b978-0-12-821873-0.00001-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Zhao K, Zhang Q, Wang W. Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed. Energies 2019;12:4619. [DOI: 10.3390/en12244619] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]